МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный аграрный университет»

УТВЕРЖДАЮ Проректор по учебной работе и цифровизации Кубышкина А.В. «18 » июня 2024 г.

Гидравлика каналов

(Наименование дисциплины)

рабочая программа дисциплины

Закреплена за кафедрой природообустройства и водопользования

Направление подготовки 20.03.02 Природообустройство и водопользование Профиль Инженерные системы сельскохозяйственного водоснабжения, обводнения и водоотведения

 Квалификация
 Бакалавр

 Форма обучения
 Очная

 Общая трудоемкость
 3 з.е.

 Часов по учебному плану
 108

Брянская область

Программу составил(и):
к.т.н. доцент Байдакова Е
Рецензент(ы):
д.т.н. доцент Василенков С.В.
Рабочая программа дисциплины <u>Гидравлика каналов</u>
разработана в соответствии с ФГОС ВО по направлению подготовки 20.03.02
Природообустройство и водопользование, утвержденного приказом Министерства
образования и науки Российской Федерации от 26 мая 2020 г. № 685
составлена на основании учебного плана 2024 года набора
Направление подготовки 20.03.02 Природообустройство и водопользование Профиль Инженерные системы сельскохозяйственного водоснабжения, обводнения и водоотведения
утвержденного Учёным советом вуза от <u>18.06.2024 г.</u> протокол № 11
Рабочая программа одобрена на заседании
Кафедра природообустройства и водопользования
Протокол от «18» июня 2024г. № <u>_11</u>

Зав. кафедрой к.т.н., доцент Байдакова Е. В.

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1. получение студентами знаний о законах равновесия и движении жидкостей и способах применения этих законов при решении практических задач в области природообустройства и водопользования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Блок ОПОП BO: Б1.B.ДВ.07.02

2.1 Требования к предварительной подготовке обучающегося:

Базовыми дисциплинами, обеспечивающими успешное изучение дисциплины «Гидравлика сооружений», являются: физика жидкостей и газов, гидравлика, гидрология, гидрогеология и основы геологии

2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:

Дисциплины, для которых данная дисциплина является предшествующей: водоснабжение, насосы и насосные станции, гидротехнические сооружения, строительство ГЭС.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Достижения планируемых результатов обучения, соотнесенных с общими целями и задачами ОПОП, является целью освоения дисциплины.

В результате изучения дисциплины обучающийся должен усвоить трудовые функции На основе анализа требований к профессиональным компетенциям, предъявляемых к выпускникам на рынке труда, обобщения отечественного, зарубежного опыта.

Освоение дисциплины направлено на формирование следующих компетенций:

Компетенция	Индикаторы достижения	Результаты обучения
(код и наименование)	достижения компетенций	
	(код и наименование)	
Тип задач профессионал	ьной деятельности: технологи	чески
ПКС-1 Способен к	ПКС-1.2 Способен решать	Знать: Способен решать задачи, связанные с
участию в	задачи, связанные с	применением в практической деятельности
строительстве объектов	применением в	методов строительства объектов
природообустройства и водопользования	практической	природообустройства и водопользования.
водопользования	деятельности методов	Уметь: Способен решать задачи, связанные
	строительства объектов	с применением в практической
	природообустройства и	деятельности методов строительства
	водопользования.	объектов природообустройства и
		водопользования. природообустройства и
		водопользования.
		Владеть Способен решать задачи,
		связанные с применением в практической
		деятельности методов строительства
		объектов природообустройства и
		водопользования.
Тип залач профессиона	альной леятельности: <i>Опга</i>	ниизационно-управленческий

ПКС-2. Способен к организании деятельности по обеспечению ресурсами, техническому обслуживанию, контролю качества и рационального использования природных ресурсов, экологической безопасности работ в области природообустройства и водопользования,

ПКС-2.2 Способен решать задачи, связанные с применением в практической деятельности методы организации работ по обеспечению ресурсами, техническому обслуживанию, контролю качества и рационального использования природных ресурсов, экологической безопасности реализации проектов по строительству и реконструкции объектов природообустройства и водопользования.

Знать: Способен решать задачи, связанные применением практической деятельности методы организации работ по обеспечению техническому ресурсами, обслуживанию, контролю качества рационального использования природных ресурсов, экологической безопасности реализации проектов по строительству и реконструкции объектов природообустройства и водопользования. Уметь: Способен решать задачи, связанные практической применением деятельности методы организации работ по техническому обеспечению ресурсами, обслуживанию, контролю качества рационального использования природных экологической ресурсов, безопасности реализации проектов по строительству и реконструкции объектов природообустройства и водопользования. Владеть: Способен решать задачи, связанные с применением в практической деятельности методы организации работ по обеспечению ресурсами, техническому обслуживанию, контролю качества рационального использования природных экологической безопасности ресурсов, реализации проектов по строительству и реконструкции объектов

природообустройства и водопользования.

Этапы формирования компетенций в процессе освоения образовательной программы: в соответствии с учебным планом и планируемыми результатами освоения ОПОП.

4. Распределение часов дисциплины по семестрам (очная форма)

Вид занятий	1	2	2	3	4	ļ	:	5	6	7	8	Ит	ого
							УΠ	РПД				УΠ	РПД
Лекции							32	32				32	32
Лабораторные													
Практические							48	48				48	48
КСР							1	1				1	1
Прием зачета							0,15	0,15				0,15	0,15
Контактная работа обучающихся с преподавателем (аудиторная)													
Сам. работа							26,85	26,85				26,85	26,85
Итого							108	108				108	108

СТРУКТУРА И СОЛЕРЖАНИЕ ЛИСПИПЛИНЫ (МОЛУЛЯ)

Код занятия	Наименование разделов и тем /вид занятия/	АНИЕ ДИСЦИПЛИНЫ (МОД м /вид занятия/ Семестр Час					
	Раздел 1. Установившееся движение жидкости в открытых руслах, равномерное и неравномерное движение жидкости в						
	призматических руслах.						
1.1	Основные понятия и определения. Удельная энергия сечения, ее график, критическая глубина. Критический уклон. Спокойное, бурное и критическое состояние потока. Критерий Фруда. Параметр кинетичности. Дифференциальное уравнение установившегося плавно изменяющегося движения в открытом русле и его интегрирование. Равномерное движение в каналах и его параметры. Определение размеров живого сечения канала при различных исходных данных. Исследование кривых свободной поверхности потока. Расчет и построение кривых свободной поверхности в призматических руслах. /Лек/	5	2	ПКС-1.2 ПКС-2.2			
1.2	Исследование равномерного движения воды в призматическом русле. Равномерное движение в магистральном канале. Равномерное движение в сбросном канале. Равномерное движение в распределительном канале. Неравномерное движение в каналах. Расчет шлюза-регулятора. /Пр/	5	8	ПКС-1.2 ПКС-2.2			
1.3	Исследование равномерного движения воды в призматическом русле. Основные понятия теории неравномерного движения. Изучение водослива практического профиля. /Ср/	5	12	ПКС-1.2 ПКС-2.2			
	Раздел 2. Гидравлический прыжок.						
2.1	Виды гидравлического прыжка. Совершенный гидравлический прыжок, его структура. Уравнение совершенного гидравлического прыжка. Прыжковая функция и ее график. Формулы сопряженных глубин для прямоугольных русел. Потери энергии в прыжке. Длина прыжка и послепрыжкового участка. Прыжок-волна (волнистый гидравлический прыжок) /Лек/	5	2	ПКС-1.2 ПКС-2.2			
2.2	Гидравлический прыжок. /Пр/	5	8	ПКС-1.2 ПКС-2.2			
2.3	Исследование совершенного гидравлического прыжка. /Ср/	5	12	ПКС-1.2 ПКС-2.2			
	Раздел 3. Истечение через водосливы.	5					
3.1	Классификация водосливов и области их применения. Общее уравнение водосливов. Учет бокового сжатия на водосливах. Условия подтопления водосливов и его учет. Расчет сооружений, работающих по типу водосливов с тонкой стенкой, водослива практического профиля, водослива с широким порогом. /Лек/	5	4	ПКС-1.2 ПКС-2.2			
3.2	Расчет водосливной плотины. Расчет нижнего бьефа водосливной плотины. /Пр/	5	8	ПКС-1.2 ПКС-2.2			

3.3	Мерные водосливы с тонкой стенкой. Водослив с широким порогом. Водослив практического профиля. /Ср/	5	10	ПКС-1.2 ПКС-2.2
	Раздел 4. Истечение из под затвора.	5		
4.1	Условия истечения жидкости из-под затвора. Уравнение равновесия при свободном и несвободном истечении. Критерии затопления. Глубина в сжатом сечении, глубина над сжатом сечением. /Лек/	5	2	ПКС-1.2 ПКС-2.2
4.2	Свободное и несвободное истечение из-под затвора. /Ср/	5	10	ПКС-1.2 ПКС-2.2
	Раздел 5. Сопряжение бьефов за сооружениями			
5.1	Общие понятия. Сопряжение потоков в каналах при изменении продольного уклона дна. Беспрыжковое сопряжение бьефов. Сопряжение ниспадающей водосливной струи с оттоком нижнего бьефа. Глубина в сжатом сечении и сопряженная с ней. Виды сопряжения потоков с гидравлическим прыжком, отогнанный и надвинутый прыжок, прыжок в предельном положении. Сопряжение потоков с отлетом струи. Гасители энергии в нижнем бьефе сооружений. Гидравлический расчет водобойного колодца, водобойной стенки. /Лек/	5	2	ПКС-1.2 ПКС-2.2
5.2	Расчет сопрягающего сооружения. /Пр/	5	8	ПКС-1.2 ПКС-2.2
5.3	Исследование характера сопряжения потока в нижнем бьефе водосливной плотины. Донный режим сопряжения потоков в нижнем бьефе. /Ср/	5	10	ПКС-1.2 ПКС-2.2
	Раздел 6. Неустановившееся движение в открытых руслах	5		
6.1	Виды волн перемещения, длинные и прерывные волны, Уравнение неустановившегося движения и открытых руслах. Основные сведения о ветровых волнах. /Лек/	5	2	ПКС-1.2 ПКС-2.2
	Раздел 7. Основы фильтрационных расчетов.	5		
7.1	Определение коэффициента фильтрации грунта. /Ср/	5	9,85	ПКС-1.2 ПКС-2.2
	Раздел 8. Основы расчета распространения примесей в водотоках и водоемах.	5		
8.1	Общие сведения о перемешивании водных масс в водотоках и водоемах. Уравнение установившейся турбулентной диффузии. Определение створа достаточного перемешивания. /Лек/	5	2	ПК-9,10,16
8.2	Контактная работа при приеме экзамена /К/	5	0,15	ПК-9,10,16

Реализация программы предусматривает и предполагает использование традиционной активной и интерактивной форм обучения на лекционных и практических занятиях.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

6.1. Рекомендуемая литература

6.1. Основная литература

	Авторы,	Заглавие	Издательство, год	Количество
1	Штеренлихт	Гидравлика	М.: КолосС, 2005	50
	Д. В.			
2	Кузнецов	Гидравлический расчет	http://window.edu.ru/resource/510/	
	E.B.,	открытых русел и	77510	
	Хаджиди	гидротехнических		ЭБС
	A.E.,	сооружений: Учебное пособие		
	Орленко			
	С.Ю			
			гельная литература	
	Авторы,	Заглавие	Издательство, год	Количество
1	Исаев А. П., Кожевников	Гидравлика.	М.: КолосС, 2010	20
	Н. Г., Ещин			20
	A. B.			
2	Анкилов	Устойчивость вязкоупругих	Ульяновск: УлГТУ, 2000 115 c.	
	A.B.,	элементов стенок проточных	http://window.edu.ru/resource/191/26191	ЭБС
	Вельмисов П.А.	каналов.		
3	Айвазян,	Основы гидравлики бурных	.— М. : Институт компьютерных	
	O.M.	потоков : [монография]	исследований; Ижевск: Регулярная и	
			хаотическая динамика, 2010 .—	ЭБС
			(Современные нефтегазовые технологии)	ЭВС
			.— Библиогр.: с. 260-261 (112 назв.) .— ISBN 978-5-93972-859-1	
			http://rucont.ru/efd/30136	
		6.1.3. Методи	ческие разработки	
	Авторы,	Заглавие	Издательство, год	Количество
	составители			
1	Крамаренко	Методические материалы по	http://window.edu.ru/resource/194/75194	
	B.B.,	курсу "Гидравлика"		ЭБС
	Савичев О.Г			
	O.1			

6.2. Перечень современных профессиональных баз данных, информационных справочных систем и ресурсов информационно-телекоммуникационной сети "Интернет"

Портал открытых данных Российской Федерации. URL: https://data.gov.ru

Компьютерная информационно-правовая система «КонсультантПлюс»

Профессиональная справочная система «Техэксперт»

Официальный интернет-портал базы данных правовой информации http://pravo.gov.ru/

Портал Федеральных государственных образовательных стандартов высшего образования http://fgosvo.ru/

Портал "Информационно-коммуникационные технологии в образовании" http://www.ict.edu.ru/

Web of Science Core Collection политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных http://www.webofscience.com

Полнотекстовый архив «Национальный Электронно-Информационный Консорциум» (НЭИКОН) https://neicon.ru/

Базы данных издательства Springer https://link.springer.com/

6.3. Перечень программного обеспечения

OC Windows 7 (подписка Microsoft Imagine Premium от 12.12.2016). Срок действия лицензии – бессрочно.

OC Windows 10 (подписка Microsoft Imagine Premium от 12.12.2016). Срок действия лицензии – бессрочно.

MS Office std 2013 (контракт 172 от 28.12.2014 с ООО АльтА плюс) Срок действия лицензии – бессрочно.

Офисный пакет MS Office std 2016 (Договор Tr000128244 от 12.12.2016 с АО СофтЛайн Трейд) Срок действия лицензии – бессрочно.

PDF24 Creator (Работа с pdf файлами, geek Software GmbH). Свободно распространяемое ПО.

Foxit Reader (Просмотр документов, бесплатная версия, Foxit Software Inc). Свободно распространяемое ПО.

Консультант Плюс (справочно-правовая система) (Гос. контракт №41 от 30.03.2018 с ООО Альянс) Срок действия лицензии – бессрочно.

Техэксперт (справочная система нормативно-технической и нормативно-правовой информации) (Контракт 120 от 30.07.2015 с ООО Техэксперт) Срок действия лицензии – бессрочно.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Учебная аудитория для проведения лабораторных занятий, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации – 128а лаборатория инженерных систем сельскохозяйственного водоснабжения, обводнения и водоотведения

Специализированная мебель на 22 посадочных мест, доска настенная, рабочее место преподавателя

Характеристика лаборатории:

- а) осушительный лоток с закрытым дренажом.
- б) лабораторная установка для определения коэффициента водоотдачи.
- в) лабораторная установка для определения коэффициента фильтрации.
- г) образцы гончарного, керамического, пластмассового дренажа с фасонными частями.
- д) лабораторная установка капельного орошения.
- е) дождевальные аппараты и насадки.
- ж) фасонные части и арматура для закрытой оросительной сети.
- з) образцы стальных, асбестоцементных и пластмассовых оросительных трубопроводов и лента с эмиттерами для капельного орошения.
- и) действующие лабораторные установки насосных станций воды из открытых водоисточников.
- к) действующая лабораторная установка подземного водозабора грунтовых вод источников орошения;
- л) гидравлический латок в лаборатории;
- м) трубы, фасонные части, арматура систем канализации населенных пунктов;
- н) иономер Экотест-2000 рН-С;
- о) электрод Эком-NH4;
- п) электрод Эком-К;

- р) термометр ТК-5.04 контактный (без зондов);
- с) влагомер МГ-44;
- т) шкаф сушильный ШС-10-02 СПУ;
- у) сигнализатор мутности Поток СМН (в комплекте);
- ф) весы Масса ВК-600;

Учебная аудитория для проведения лабораторных занятий, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации — 1286 лаборатория инженерных систем сельскохозяйственного водоснабжения, обводнения и водоотведения

Специализированная мебель на 24 посадочных места, доска настенная, рабочее место преподавателя

Характеристика лаборатории:

Для проведения занятий имеются наборы демонстрационного оборудования и учебнонаглядных пособий (стендов, макетов, плакатов и пр.), которые обеспечивают тематические иллюстрации, соответствующие рабочей программе дисциплины.

Учебная аудитория для проведения учебных и групповых занятий — 406 лаборатория информационных технологий в природообустройстве и землеустройстве.

Специализированная мебель на 18 посадочных мест, доска настенная, рабочее место преподавателя; 5 рабочих мест с программным обеспечением, с выходом в локальную сеть и интернет, электронным учебно-методическим материалам, библиотечному электронному каталогу, ЭБС, к электронной информационно-образовательной среде.

Характеристика лаборатории:

- a) ArcGIS 10.2 Лицензионный договор 28/1/3 от 28.10.2013;
- б) CREDO III (геодезия, землеустройство и кадастры). Договор 485/12 от 05.09.2012 Российское ПО;
- в) Наш Сад 10. Контракт №СС БР-542 от 04.10.2017. Российское ПО;
- г) виртуальная лаборатория LabWorks. 2009г;

8. ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ И ИНВАЛИДОВ

- для слепых и слабовидящих:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением, или могут быть заменены устным ответом;
- обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- для выполнения задания при необходимости предоставляется увеличивающее устройство; возможно также использование собственных увеличивающих устройств;
- письменные задания оформляются увеличенным шрифтом;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.
 - для глухих и слабослышащих:
- лекции оформляются в виде электронного документа, либо предоставляется звукоусиливающая аппаратура индивидуального пользования;
- письменные задания выполняются на компьютере в письменной форме;

- экзамен и зачёт проводятся в письменной форме на компьютере; возможно проведение в форме тестирования.
 - для лиц с нарушениями опорно-двигательного аппарата:
- лекции оформляются в виде электронного документа, доступного с помощью компьютера со специализированным программным обеспечением;
- письменные задания выполняются на компьютере со специализированным программным обеспечением;
- экзамен и зачёт проводятся в устной форме или выполняются в письменной форме на компьютере.

При необходимости предусматривается увеличение времени для подготовки ответа.

Процедура проведения промежуточной аттестации для обучающихся устанавливается с учётом их индивидуальных психофизических особенностей. Промежуточная аттестация может проводиться в несколько этапов.

При проведении процедуры оценивания результатов обучения предусматривается использование технических средств, необходимых в связи с индивидуальными особенностями обучающихся. Эти средства могут быть предоставлены университетом, или могут использоваться собственные технические средства.

Проведение процедуры оценивания результатов обучения допускается с использованием дистанционных образовательных технологий.

Обеспечивается доступ к информационным и библиографическим ресурсам в сети Интернет для каждого обучающегося в формах, адаптированных к ограничениям их здоровья и восприятия информации:

- для слепых и слабовидящих:
- в печатной форме увеличенным шрифтом;
- в форме электронного документа;
- в форме аудиофайла.
- для глухих и слабослышащих:
- в печатной форме;
- в форме электронного документа.
- для обучающихся с нарушениями опорно-двигательного аппарата:
- в печатной форме;
- в форме электронного документа;
- в форме аудиофайла.

Учебные аудитории для всех видов контактной и самостоятельной работы, научная библиотека и иные помещения для обучения оснащены специальным оборудованием и учебными местами с техническими средствами обучения:

- для слепых и слабовидящих:
- электронно-оптическое устройство доступа к информации для лиц с ОВЗ предназначено для чтения и просмотра изображений людьми с ослабленным зрением.
- специализированный программно-технический комплекс для слабовидящих. (аудитория 1-203)
- для глухих и слабослышащих:
- автоматизированным рабочим местом для людей с нарушением слуха и слабослышащих;
 - акустический усилитель и колонки;
- индивидуальные системы усиления звука

«ELEGANT-R» приемник 1-сторонней связи в диапазоне 863-865 МГц

«ELEGANT-Т» передатчик

«Easy speak» - индукционная петля в пластиковой оплетке для беспроводного подключения устройства к слуховому аппарату слабослышащего

Микрофон петличный (863-865 МГц), Hengda

Микрофон с оголовьем (863-865 МГц)

- групповые системы усиления звука
- -Портативная установка беспроводной передачи информации .
- для обучающихся с нарушениями опорно-двигательного аппарата:
 - передвижными, регулируемыми эргономическими партами СИ-1;
 - компьютерной техникой со специальным программным обеспечением.

Приложение 1

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Гидравлика каналов

Направление подготовки: 20.03.02 Природообустройство и водопользование Профиль: Инженерные системы сельскохозяйственного водоснабжения,

обводнения и водоотведения

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Направление подготовки: 20.03.02 Природообустройство и водопользование Профиль: Инженерные системы сельскохозяйственного водоснабжения, обводнения и водоотведения

Дисциплина: Гидравлика каналов

природных ресурсов,

безопасности работ в

природообустройства и

водопользования,

экологической

области

Форма промежуточной аттестации: зачет

2. ПЕРЕЧЕНЬ ФОРМИРУЕМЫХ КОМПЕТЕНЦИЙ И ЭТАПЫ ИХ ФОРМИРОВАНИЯ

2.1. Компетенции, закреплённые за дисциплиной ОПОП ВО.

Изучение дисциплины «Гидравлика каналов» направлено на формировании следующих компетенций:

следующих компетенц	mn.	
Компетенция	Индикаторы достижения	Результаты обучения
(код и наименование)	достижения компетенций	
	(код и наименование)	
1 1	ьной деятельности: технологи	чески
ПКС-1 Способен к участию в строительстве объектов природообустройства и водопользования	ПКС-1.2 Способен решать задачи, связанные с применением в практической деятельности методов строительства объектов природообустройства и водопользования.	Знать: Способен решать задачи, связанные с применением в практической деятельности методов строительства объектов природообустройства и водопользования. Уметь: Способен решать задачи, связанные с применением в практической деятельности методов строительства объектов природообустройства и водопользования. природообустройства и водопользования. Владеть Способен решать задачи, связанные с применением в практической деятельности методов строительства
		объектов природообустройства и водопользования.
Тип задач профессиона	альной деятельности: <i>Орга</i>	ниизационно-управленческий
ПКС-2. Способен к	ПКС-2.2 Способен	Знать: Способен решать задачи, связанные
организации	решать задачи, связанные с	с применением в практической
деятельности по	применением в	деятельности методы организации работ по
обеспечению	практической	обеспечению ресурсами, техническому
ресурсами, техническому	деятельности методы	обслуживанию, контролю качества и рационального использования природных
обслуживанию,	организации работ по	ресурсов, экологической безопасности
контролю качества и	обеспечению ресурсами,	реализации проектов по строительству и
рационального	техническому	реконструкции объектов
использования	обслуживанию, контролю	природообустройства и водопользования.
Harrachin in account to	обслуживанию, контролю	Vacati Changan payori pangun apgrayu a

качества и рационального

использования природных

ресурсов, экологической

безопасности реализации

проектов по строительству

и реконструкции объектов

Уметь: Способен решать задачи, связанные

деятельности методы организации работ по

рационального использования природных

экологической

контролю

В

практической

техническому

безопасности

качества

применением

обслуживанию,

ресурсов,

обеспечению ресурсами,

природообустройства и	реализации проектов по строительству и
водопользования.	реконструкции объектов
	природообустройства и водопользования.
	Владеть: Способен решать задачи,
	связанные с применением в практической
	деятельности методы организации работ по
	обеспечению ресурсами, техническому
	обслуживанию, контролю качества и
	рационального использования природных
	ресурсов, экологической безопасности
	реализации проектов по строительству и
	реконструкции объектов
	природообустройства и водопользования.

2.2. Процесс формирования компетенций по дисциплине «Электрический привод»

		C	КС	-1	Γ	ІКС-	-2
№ раздела	Наименование раздела	31	31	У1	H1	У1	H1
1	Основные законы гидростатики	+	+	+	+	+	+
2	Виды движения, основные гидравлические параметры потока	+	+	+	+	+	+
3	Основы гидродинамики	+	+	+	+	+	+
4	Уравнение Бернулли для потока реальной жидкости. Определение потерь	+	+	+	+	+	+
5	Режимы движения жидкости	+	+	+	+	+	+
6	Истечение через отверстия, насадки, короткие трубопроводы.	+	+	+	+	+	+
7	Гидравлические расчеты напорных трубопроводов	+	+	+	+	+	+
8	Неустановившееся движение в напорных трубопроводах	+	+	+	+	+	+
	Установившееся движение жидкости в открытых руслах, равномерное и неравномерное движение жидкости в призматических руслах.	+	+	+	+	+	+
2	Гидравлический прыжок	+	+	+	+	+	+
	Истечение через водосливы	+	+	+	+	+	+
4	Истечение из под затвора	+	+	+	+	+	+
5	Сопряжение бьефов за сооружениями	+	+	+	+	+	+
6	Неустановившееся движение в открытых руслах	+	+	+	+	+	+
7	Основы фильтрационных расчетов.	+	+	+	+	+	+
8	Основы расчета распространения примесей в водотоках и водоемах.	+	+	+	+	+	+

Сокращение:

3 - знание; У - умение; Н - навыки.

2.3. Структура компетенций по дисциплине (наименование дисциплины)

ОПК—1. Способен участвовать в осуществлении технологических процессов по инженерным изысканиям, проектированию, строительству, эксплуатации и реконструкции объектов природообустройства и водопользования.

ОПК-1.1. Способен применять методы управления процессами в области инженерных изысканий, проектирования, строительства, эксплуатации и реконструкции объектов

природообустройства и водопользования.

Знать (3	1)	Уметь ((Y1)	Владеть (Н1)		
как	лекции	принимат	самостоя-	навыками	самостоя-	
принимать	разделов	Ь	тельная	принимать	тельная	
профессиональ	№12	профессионал	работа	профессиональн	работа	
ные решения		ьные решения	раздела	ые решения при	раздела	
при		при	№ 1	строительстве и	№ 2	
строительстве и		строительстве		эксплуатации		
эксплуатации		И		объектов		
объектов		эксплуатации		природообустро		
природообустр		объектов		йства и		
ойства и		природообуст		водопользовани		
водопользовани		ройства и		Я		
Я		водопользован				
		ия				

ОПК—1. Способен участвовать в осуществлении технологических процессов по инженерным изысканиям, проектированию, строительству, эксплуатации и реконструкции объектов природообустройства и водопользования.

ОПК-1.2 Способен решать задачи связанные с управлением процессами в области инженерных изысканий, проектирования, строительства, эксплуатации и реконструкции объектов природообустройства и водопользования.

Знать (3	1)	Уметь (У1)	Владеть	(H1)
дисципли	лекции	соблюдат	самостоя-	способнос	самостоя-
ну при	разделов	Ь	тельная	тью соблюдать	тельная
строительстве и	№5	установленну	работа	установленную	работа
эксплуатации		Ю	раздела	технологическу	раздела
объектов		технологическ	№6	ю дисциплину	№8
природообустр		ую		при	
ойства и		дисциплину		строительстве и	
водопользовани		при		эксплуатации	
Я		строительстве		объектов	
		И		природообустро	
		эксплуатации		йства и	
		объектов		водопользовани	
		природообуст		Я	
		ройства и			
		водопользован			
		ия			

ПКС-1 Способен к участию в строительстве объектов природообустройства и водопользования

ПКС-1.1 Использует знания и владение методами строительства объектов природообустройства и водопользования

Знать (31)		Уметь (У1)		Владеть (Н1)		
способы	лекции	решать задачи	практичес	навыками	-	
гидравлическог	разделов	предметной	кие	выполнения	практичес-	
о расчета	№ 6; 5; 8	области:	работы	инженерных	кие работы	
напорных		оценивать	разделов	гидравлических	разделов	
трубопроводов		различные	№6; 5; 8	расчетов;	№ 6; 5; 8	
при		методы	лаборатор	проведения		
установившемс		решения задач	ные	лабораторных	-самостоя-	

	_		_	_	_
я и		и выбирать	работы	гидравлических	тельная
неустановивше	ивше оптимальный		разделов	исследований,	работа
мся движении.		метод.	№ 6; 5; 8	обработки и	разделов
				анализа их	№ 6; 5; 8
				результатов	
ПКС-1 Способен к	участию в с	троительстве объек	стов природоо	бустройства и водоп	ользования
ПКС-1.2 Способен	н решать зада	чи, связанные с пр	именением в г	грактической деятел	ьности
методов строитель	ства объекто	в природообустрой	і́ства и водопо	льзования.	
Знать (31)		Уметь (У1)		Владеть (Н1)	
основные	лекции	выполнять	практичес	навыками	-
закономерности	разделов	гидравлически	кие	выполнения	практичес-
равновесия и	№2; 3; 4;	е расчеты	работы	инженерных	кие работы
движения	7	трубопроводов	разделов	гидравлических	разделов
жидкости,		, проводить	№ 2; 3; 4; 7	расчетов;	№2; 3; 4; 7
основные		расчеты	лаборатор	проведением	
параметры и		сооружений,	ные	лабораторных	-самостоя-
способы		использовать	работы	гидравлических	тельная
расчета		знания	разделов	исследований,	работа
потоков в		методики	№ 2; 3; 4; 7	обработки и	разделов
трубопроводах.		расчета		анализа их	№2; 3; 4; 7
		трубопровода.		результатов.	
ПКС-1 Способен к	участию в с	гроительстве объек	стов природоо	бустройства и водоп	ользования
ПКС-1.1 Испо	льзует зна	ания и владен	ние метода	ми строительств	а объектов
природообустрой	і́ства и водо	пользования			
Знать (31)		Уметь (У1)		Владеть (Н1)	
как	лекции	обеспечивать	практичес	способностью	-
рациональное	разделов	требуемое	кие	обеспечивать	практичес-
использование	№2; 3; 4;	качество	работы	требуемое	кие работы
природные	7	выполняемых	разделов	качество	разделов
ресурсов		работ и	№ 2; 3; 4; 7	выполняемых	№2; 3; 4; 7
		рациональное	лаборатор	работ и	
		использование	ные	рациональное	-самостоя-
		ресурсов	работы	использование	тельная
			разделов	ресурсов	работа
			№2; 3; 4; 7		разделов
					№2; 3; 4; 7

З.ПОКАЗАТЕЛИ, КРИТЕРИИ ОЦЕНКИ КОМПЕТЕНЦИЙ И ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ

3.1. Оценочные средства для проведения промежуточной аттестации дисциплины

Карта оценочных средств промежуточной аттестации дисциплины, проводимой в форме экзамена

п/ дисциплины (темы, вопросы) тенции ное ср. 1 Основные закопы гидростатики Предмет гидравлики. Гидростатика. Дифференциальное уравнение равновесия жидкости (уравнение Эйпера). Основное уравнение диростатики. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметры, вакуумметры, вакуумметры гидростатический парадок. Сила давления жидкости на произвольно ориентированную поверхность. Сила давления на цилиндрические поверхность. Сила давления на цилиндрические поверхность. Центр давления. ОПК-1.1, оПК-1.2 (ПКС-1.2) ОПК-1.1, оПКС-1.2 ОПК-1.1, оПКС			форме экзамена		
П Основные законы гидростатики Дифференциальное уравнение равновесии жидкости (уравнение Эйлсра). Основное уравнение гидростатики. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметры, дифференциальные маномстры. Гидростатичский парадокс. Сила давления на цилиндрические поверхности. Центр давления жидкости. Пентр давления жидкости. Неустановившееся и установившееся и установи и		Раздел	Контролируемые дидактические единицы	Компе-	Оценоч-
Предмет гидравлики. Гидростатика. Дифференциальное уравнение равновсеня жидкости (уравнение Эйлера). Основное уравнение гидростатики. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметры, дифференциальные манометры. Гидростатический парадокс. Сила давления жидкости на произвольно ориентированную поверхность. Сила давления на цилиндические поверхности. Центр давления. Способы описания жидкости. Опик-1.1. ПКС-1.2 ПКС-1.1 ПКС-1.2 ПКС-1.3 ПК	Π/	дисциплины	(темы, вопросы)	тенции	ное ср-во
Тидростатики Дифференциальное уравнение равновесия жидкости (уравнение Эйлера). Основное уравнение гидростатики. Формула определения давления. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметры, дифференциальные манометры. Гидростатический парадоке. Сила давления на цилиндрические поверхности. Центр давления на цилиндрические поверхности. Центр давления видов движения жидкости. Неустановившесся и установившесся и установившесея и установиться и установиться и установитьс	П				
основные гидравлические параметры потока Водомера Уравнение Бернулли для потока реальной жидкости. Основные гидравлические параметры потока и элементарная струйка. Понятие о вихревом и безвихревом (потенциальном) движении. Поток жидкости. Основы гидродинамики Поток жидкости. Дифференциальные уравнения движения невязкой жидкости. (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости. Применение уравнения Бернулли для расчета коротких трубопроводов, состоящих из нескольких участков разного диаметра Определение коэффициента расхода водомера Уравнение Бернулли для элементарной струйки невязкой и несжимаемой жидкости. Дифференциальные уравнения движения невязкой и несжимаемой жидкости. Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости. Определение потерь напора.	1		Дифференциальное уравнение равновесия жидкости (уравнение Эйлера). Основное уравнение гидростатики. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметрическое давление. Пьезометры, вакуумметры, дифференциальные манометры. Гидростатический парадокс. Сила давления жидкости на произвольно ориентированную поверхность. Сила давления на цилиндрические поверхности.	ОПК-1.2 ПКС-1.1	Вопрос на зачете 19
гидродинамики невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости. Применение уравнения Бернулли для расчета коротких трубопроводов, состоящих из нескольких участков разного диаметра Определение коэффициента расхода водомера Уравнение Бернулли для элементарной струйки невязкой и несжимаемой жидкости. 4 Уравнение Бернулли для невязкой и несжимаемой жидкости. Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося жидкости. Определение Определение потерь напора.	2	основные гидравлические	Классификация видов движения жидкости. Неустановившееся и установившееся движение жидкости. Линия тока. Трубка тока и элементарная струйка. Понятие о вихревом и безвихревом (потенциальном) движении.	ОПК-1.2 ПКС-1.1	Вопрос на зачете 1012
Бернулли для потока реальной жидкости. Определение Определение потерь напора. ОПК-1.2 ПКС-1.1 ПКС-1.2 На зачения невязкой жидкости.	3		невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости. Применение уравнения Бернулли для расчета коротких трубопроводов, состоящих из нескольких участков разного диаметра Определение коэффициента расхода водомера Уравнение Бернулли для элементарной	ОПК-1.2 ПКС-1.1 ПКС-1.2	Вопрос на зачете 13
Потерь (Определение диаметра трубы при запачном	4	Бернулли для потока реальной жидкости.	невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости.	ОПК-1.2 ПКС-1.1	Вопрос на зачете 1416

		расходе и напоре Изучение уравнения Бернулли Определение коэффициента Дарси Уравнение Бернулли для элементарной струйки невязкой и несжимаемой жидкости.	OHK	
5	жидкости	Ламинарный и турбулентный режимы движения жидкости. Пульсации скоростей и давлений. Число Рейнольдса и его критическое значение. Гидравлически гладкие и шероховатые поверхности. Определение коэффициента Дарси при различных режимах движения Потери напора при ламинарном и турбулентном режимах движения. Гидравлически гладкие и шероховатые стенки. Коэффициент Дарси при ламинарном и турбулентном режимах движения.	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Вопрос на зачете 1718
6	Истечение через отверстия, насадки, короткие трубопроводы.	Истечение через малые отверстия в тонкой стенке, насадки, короткие трубы при постоянном напоре. Виды сжатия струи. Виды насадков. Коэффициенты расхода, скорости, сжатия струи. Определение действующего напора Вакуум во внешнем цилиндрическом насадке. Коэффициент расхода системы. Истечение через малые отверстия в тонкой стенке, насадки, короткие трубы при переменном напоре.	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Вопрос на зачете 1922
7	Гидравлические расчеты напорных трубопроводов	Расчет гидравлически длинных трубопроводов при последовательном и параллельном соединениях труб. Расчеты простого гидравлически длинного трубопровода. Последовательное и параллельное соединение труб. Расчет трубопровода при непрерывной раздаче и транзитном расходе Расчет трубопровода с непрерывным изменением расхода по длине	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Вопрос на зачете 2327
8	Неустановившееся движение в напорных трубопроводах	Гидравлический удар в трубах. Гидравлический удар в трубопроводе при мгновенном и постепенном закрытии затвора. Формула Н.Е. Жуковского. Скорость распространения ударной волны. Прямой и непрямой гидравлический удар при заданном законе закрытия задвижки. Диа грамма изменения давления у задвижки.	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Вопрос на зачете 28

Перечень вопросов к дифференцированному зачету по дисциплине *«Гидравлика»*

- 1. Гидростатическое давление и его свойства.
- 2. Уравнения равновесия жидкости (уравнения Эйлера). Основное уравнение гидростатики.
- 3. Поверхности равного давления. Полное и манометрическое давление. Вакуум.
 - 4. Графическое изображение давления.
- 5. Сила гидростатического давления на горизонтальную плоскую поверхность. Гидростатический парадокс.
- 6. Сила давления жидкости на произвольно ориентированную плоскую поверхность.
 - 7. Центр давления. Координаты центра давления.
- 8. Графоаналитическое определение величины и центра давления на плоские прямоугольные поверхности.
 - 9. Сила давления жидкости на криволинейные поверхности.
 - 10. Закон Архимеда. Условие плавания тел. Остойчивость плавающих тел
- 11. Понятия о потоке, линии тока, элементарной струйке. Виды движения жидкости.
 - 12. Гидравлические характеристики потока. Расход и средняя скорость.
- 13. Уравнение Бернулли для элементарной струйки идеальной и реальной жидкости.
- 14. Уравнение Бернулли для потока реальной жидкости при установившемся плавно изменяющемся движении. Уравнение неразрывности
- 15. Классификация потерь напора. Общая формула для определения потерь напора.
- 16. Ламинарный и турбулентный режимы движения жидкости. Число Рейнольдса.
 - 17. Понятие о гидравлически гладких и шероховатых трубах.
 - 18. Определение потерь напора по длине. Местные потери напора.
 - 19. Виды истечения. Сжатие струи.
- 20. Истечение через малые отверстия в тонкой стенке в атмосферу и под уровень при постоянном напоре
- 21. Типы насадков. Истечение через насадки в атмосферу и под уровень при постоянном напоре
 - 22. Истечение жидкости при переменном напоре
- 23. Расчет простого гидравлически длинного трубопровода. Расчетная схема. Основные расчетные зависимости
- 24. Гидравлический расчет трубопровода при последовательном соединении труб. Расчетная схема. Основные расчетные зависимости
- 25. Гидравлический расчет трубопровода при параллельном соединении труб. Расчетная схема. Основные расчетные зависимости
- 26. Гидравлический расчет трубопровода при изменении расхода вдоль пути. Расчетная схема. Основные расчетные зависимости.
 - 27. Расчет распределительных водопроводных сетей.
- 28. Гидравлический удар в трубах. Причины возникновения и меры борьбы с ним.
- 1. Расчет канала способом Агроскина из условия незаиляемости и неразмываемости.

- 2. Гидравлические элементы поперечного сечения каналов.
- 3. Понятие о гидравлически наивыгоднейшем сечении каналов.
- 4. Ограничение скоростей движения жидкости при расчете канала.
- 5. Установившееся неравномерное движение жидкости в открытых потоках.
- 6. Характеристики потока при неравномерном движении.
- 7. График зависимости энергии от глубины Э=f (h).
- 8. Классификация открытых русл по уклону дна. Понятия: нормальная глубина, удельная энергия сечения, критическая глубина, критический уклон.
 - 9. Способы определения критической глубины в потоке.
 - 10. Анализ форм кривых свободной поверхности потока.
 - 11. Расчет кривых свободной поверхности потока (КСП).
 - 12. Гидравлический прыжок. Уравнение гидравлического прыжка.
 - 13. График прыжковых функций и ее анализ
 - 14. Определение сопряженных глубин совершенного гидравлического прыжка.
 - 15. Потери энергии в гидравлическом прыжке.
 - 16. Длина совершенного гидравлического прыжка.
 - 17. Классификация водосливов.
- 18. Подтопленный прямой прямоугольный водослив с тонкой стенкой. Схема. Условия подтопления.
- 19. Неподтопленный прямой прямоугольный водослив с широким порогом. Расчетная схема. Формула расхода.
- 20. Подтопленный водослив с широким порогом. Расчетная схема. Условия подтопления.
 - 21. Водосливы практического профиля.
 - 22. Гашение энергии в нижнем бъефе гидротехнических сооружений.
 - 23. Гидравлический расчет водобойного колодца.
 - 24. Гидравлический расчет водобойной стенки.
 - 25. Неустановившееся движение в открытых руслах
 - 26. Основы фильтрационных расчетов.
 - 27. Основы расчета распространения примесей в водотоках и водоемах.

Критерии оценки компетенций.

Промежуточная аттестация студентов по дисциплине «Гидрогеология и основы геологии» проводится в соответствии с Уставом Университета, Положением о форме, периодичности и порядке текущего контроля успеваемости и промежуточной аттестации обучающихся. Промежуточная аттестация по дисциплине проводится в соответствии с учебным планом в форме экзамена. Студент допускается к экзамену по дисциплине в случае выполнения им учебного плана по дисциплине: выполнения всех заданий и мероприятий, предусмотренных рабочей программой дисциплины.

Знания, умения, навыки студента на экзамене оцениваются оценками: *«отлично»*, *«хорошо»*, *«удовлетворительно»*, *«неудовлетворительно»*.

Оценивание студента на экзамене

Результат	Критерии
«отлично»,	Обучающийся показал прочные знания основных положений учебной
высокий	дисциплины, умение самостоятельно решать конкретные практические
уровень	задачи повышенной сложности, свободно использовать справочную
	литературу, делать обоснованные выводы из результатов расчетов или
	экспериментов

«хорошо»,	Обучающийся показал прочные знания основных положений учебной
повышенный	дисциплины, умение самостоятельно решать конкретные практические
уровень	задачи, предусмотренные рабочей программой, ориентироваться в
	рекомендованной справочной литературе, умеет правильно оценить
	полученные результаты расчетов или эксперимента
«удовлетвори	Обучающийся показал знание основных положений учебной дисциплины,
тельно»,	умение получить с помощью преподавателя правильное решение
пороговый	конкретной практической задачи из числа предусмотренных рабочей
уровень	программой, знакомство с рекомендованной справочной литературой
	При ответе обучающегося выявились существенные пробелы в знаниях
«неудовлетво	основных положений учебной дисциплины, неумение с помощью
рительно»,	преподавателя получить правильное решение конкретной практической
уровень не	задачи из числа предусмотренных рабочей программой учебной
сформирован	дисциплины

3.2. Оценочные средства для проведения текущего контроля знаний по дисциплине Карта оценочных средств текущего контроля знаний по дисциплине Гидравлика

No॒	Раздел	Контролируемые дидактические единицы	Контроли	Дру	тие
Π/Π	дисциплин		ру- емые	оцено	
	Ы		компетен	средс	тва**
			ции (или		
			их части)	вид	кол-во
	гидростат ики	Предмет гидравлики. Гидростатика. Дифференциальное уравнение равновесия жидкости (уравнение Эйлера). Основное уравнение гидростатики. Формула определения давления в точке. Абсолютное, избыточное и вакуумметрическое давления давления в точке. Абсолютное, избыточное и вакуумметрическое давление. Пьезометры, вакуумметрическое давление. Пьезометры, вакуумметры, дифференциальные манометры. Гидростатический парадокс. Сила давления жидкости на произвольно ориентированную поверхность. Сила давления на цилиндрические	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Опрос Письме нное тестиро вание	1
	Виды движения, основные гидравлич еские параметры	поверхности. Центр давления. Способы описания жидкости. Классификация видов движения жидкости. Неустановившееся и установившееся движение жидкости. Линия тока. Трубка тока и элементарная струйка. Понятие о вихревом и безвихревом (потенциальном) движении. Поток жидкости.	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Опрос Письме нное тестиро вание	1
3		Дифференциальные уравнения движения невязкой жидкости (уравнения Эйлера). Интеграл Бернулли для установившегося движения невязкой жидкости. Применение уравнения Бернулли для расчета коротких трубопроводов, состоящих из нескольких участков разного диаметра	ОПК-1.1, ОПК-1.2 ПКС-1.1 ПКС-1.2	Опрос Письме нное тестиро вание	1

	1	0 11	1	1	
		Определение коэффициента расхода			
		водомера			
		Уравнение Бернулли для элементарной			
4		струйки невязкой и несжимаемой жидкости.	OTH(1.1		
4	Уравнение	71	ОПК-1.1, ОПК-1.2		
		невязкой жидкости (уравнения Эйлера).	ПКС-1.1		
	для потока		ПКС-1.2		
	-	движения невязкой жидкости.		Опрос	
	жидкости.			Письме	
	_	диаметра трубы при заданном расходе и		нное	1
	ие потерь	напоре		тестиро	
		Изучение уравнения Бернулли Определение		вание	
		коэффициента Дарси			
		Уравнение Бернулли для элементарной			
	D	струйки невязкой и несжимаемой жидкости.	OTIL: 1 1		
5	Режимы	Ламинарный и турбулентный режимы	ОПК-1.1, ОПК-1.2		
		движения жидкости. Пульсации скоростей и	ПКС-1.1		
	жидкости	давлений. Число Рейнольдса и его критическое	ПКС-1.2		
		значение.		Опрос	
		Гидравлически гладкие и шероховатые		Письме	
		поверхности. Определение коэффициента Дарси		нное	1
		при различных режимах движения		тестиро	
		Потери напора при ламинарном и		вание	
		турбулентном режимах движения.			
		Гидравлически гладкие и шероховатые стенки.			
		Коэффициент Дарси при ламинарном и			
-		турбулентном режимах движения.	ОПК-1.1,		
6	Истечение	Истечение через малые отверстия в тонкой	ОПК-1.1,		
	-	стенке, насадки, короткие трубы при	ПКС-1.1		
		постоянном напоре. Виды сжатия струи. Виды	ПКС-1.2	Опрос	
	-	насадков. Коэффициенты расхода, скорости,		Опрос Письме	
	_	сжатия струи.			1
	трубопров			нное	1
	оды.	Вакуум во внешнем цилиндрическом насадке. Коэффициент расхода системы.		тестиро	
		насадке. Коэффициент расхода системы. Истечение через малые отверстия в тонкой		вание	
		стенке, насадки, короткие трубы при переменном напоре.			
7	Гидравлич		ОПК-1.1,		
'	_	трубопроводов при последовательном и	ОПК-1.1,		
		параллельном соединениях труб.	ПКС-1.1		
	напорных	Расчеты простого гидравлически длинного	ПКС-1.2	Опрос	
	_	трубопровода. Последовательное и		Письме	
	одов	параллельное соединение труб. Расчет		нное	1
	одов	трубопровода при непрерывной раздаче и		тестиро	
		транзитном расходе		вание	
		Расчет трубопровода с непрерывным			
		изменением расхода по длине			
8	Неустанов	Гидравлический удар в трубах.	ОПК-1.1,	Опрос	
	•	Гидравлический удар в трубопроводе при	ОПК-1.2	Письме	_
	движение	мгновенном и постепенном закрытии затвора.	ПКС-1.1	нное	1
		Формула Н.Е. Жуковского. Скорость	ПКС-1.2	тестиро	
	L	1 July 22 Control of the pool	1	r	

напорных	распространения ударной волны. Прямой и	вание
трубопро	в непрямой гидравлический удар при заданном	
одах	законе закрытия задвижки. Диа грамма	
	изменения давления у задвижки.	

** - устный опрос (индивидуальный, фронтальный, собеседование, диспут); контрольные письменные работы (диктант); устное тестирование; письменное тестирование; компьютерное тестирование; выполнение расчетно-графического задания; практическая работа; олимпиада; наблюдение (на производственной практике, оценка на рабочем месте); защита работ (ситуационные задания, реферат, статья, проект, ВКР, подбор задач, отчет, защита письменной работы, доклад по результатам самостоятельной работы и др.); защита портфолио; участие в деловых, ситуационных, имитационных играх и др.

Тесты

для текущего контроля

по дисциплине: «Гидравлика»

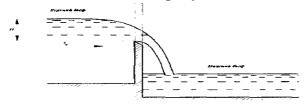
Профиль подготовки бакалавриата: инженерные системы с/х водоснабжения, обводнения и водоотведения

- 1. Абсолютное гидростатическое давление в общем случае равно...... давлений.
 - сумме весового и избыточного
 - сумме атмосферного и избыточного
 - разности избыточного и поверхностного
 - разности атмосферного и весового
- 2. Бак с водой прямоугольной формы имеет в дне малое отверстие, через которое проходит его опорожнение. Если уровень воды в баке уменьшить в 2 раза, то время опорожнения...... раза.
 - увеличится в 2
 - уменьшится в 2
 - уменьшится в 1,4
 - увеличится в 1,4
- 2а. Бак с водой прямоугольной формы имеет в дне малое отверстие, через которое проходит его опорожнение. Определить, как изменится время опорожнении, если площадь сечения бака уменьшить в 2 раза.
 - увеличится в 2
 - уменьшится в 2
 - уменьшится в 4
 - увеличится в 4
- 3. Бак прямоугольной формы, заполненный водой, имеет в дне малое отверстие, через которое проходит его опорожнение. Если площадь бака 0.5m^2 , высота бака 1.5m, диаметр отверстия 5cm, то время опорожнения..... с.
 - 228
 - 57
 - 29
 - 228
- 4. Бак прямоугольной формы, заполненный водой, имеет в дне внешний цилиндрический насадок, через которое проходит его опорожнение. Если площадь бака 0.5м², высота бака 2м, диаметр отверстия 5см, то время опорожнения...... с.
 - 28
 - 198
 - 57
 - 14
- 5. Безнапорное отверстие вырез сделанный в перегораживаемой стенке, через которое протекает вода, называется.....
 - водоспуском
 - водоводом
 - водосливом
 - водовыпуском
- 6. Бак с водой прямоугольной формы имеет в дне малое отверстие, через которое проходит его опорожнение. Если диаметр отверстия уменьшить в 2 раза, то время опорожнения...... раза.
 - увеличится в 4

- уменьшится в 2 - уменьшится в 1,4 - увеличится в 1,4 Бак прямоугольной формы, заполненный водой, имеет в дне малое отверстие, через которое проходит его опорожнение, если к отверстию присоединить внешний цилиндрический насадок, то время опорожнения......с - увеличится в 2 - уменьшится в 1,32 - уменьшится в 2 - увеличится в 1,32 Благодаря..... возможным получение дифференциальных уравнений равновесия и движения жидкости. - растворимости - постоянства t - постоянства давлений -гипотеза сплошности Бас с водой прямоугольной формы имеет в дне малое отверстие, через **6в.** которое проходит его опорожнение. Если диаметр отверстия увеличить в 2 раза, то время опорожнения..... раза. - уменьшится в 4 - уменьшится в 2 - уменьшится в 1,4 - увеличится в 1,4 Выполнения критерия Фруда соблюдается при условии...... - $Fr_{\mu} \prec Fr_{\mu}$ - $Fr_{\mu} \neq Fr_{\mu}$ - $Fr_{u} > Fr_{u}$ - $Fr_{\mu} = Fr_{\mu}$ Величина максимального вакуума в насадке Вентури равна...... -(0,5-0,6)H- 1H -(0.75-0.8)H-0.9HВеличина $z + p / \rho g$ в энергетической 9. энтерпретации Бернулли для установившегося движения вязкой жидкости при действии сил тяжести и сил давления называется..... - пьезометрическим уклоном - скоростным напором - пьезометрическим или гидростатическим напором - гидростатическим напором Выполнения критерия Эйлера соблюдается при условии...... - $Fu_{\mu} \prec Fu_{\mu}$

 $-Fu_{H} \neq Fu_{M}$ $-Fu_{H} \succ Fu_{M}$ $-Fu_{H} = Fu_{M}$

11.	Величина	$\sum h$	В	уравнении	Бернулли	для	потока	реальной	вязкой
жидкости	интерпретиру	ет		• • • • • •					


- среднюю скорость между рассматриваемыми сечениями
- давление в точках рассматриваемых сечений
- потери удельной энергии напора на участке между рассматриваемыми сечениями
- коэффициент кинетической энергии (коэффициент Кориолиса)

12. В формуле $R = w/\chi$ для определения гидравлического радиуса канала величина w обозначает.....

- коэффициент потенциальной энергии
- площадь поперечного сечения
- ширину канала по дну
- смоченный периметр

13. Вязкостью жидкости называют свойство жидкости......

- изменять свой объем при изменении давления на 1 Па
- оказывать сопротивление относительному сдвигу слоев
- переходить из жидкого в газообразное состояние при изменении температуры
- изменять плотность при изменении температуры
- 14. Величина Н на рисунке называется...... на водосливе.

- падением
- перепадом
- геометрическим напором
- полным напором

15. Весовое гидростатическое давление определяется как.....

- произведение заглубления точки на плотность жидкости
- частное от деления заглубления точки на плотность жидкости
- произведение заглубления точки на ускорение силы тяжести
- произведение заглубления точки на удельный вес жидкости

16. В открытом сосуде эпюра весового давления на вертикальную или наклонную стенку совпадает с эпюрой...... давлений.

- абсолютного
- вакуумметрического
- поверхностного
- манометрического

17. Взаимосвязь между плотностью и удельным весом жидкости определяется формулой.....

- $-\lambda = \rho S$
- $\gamma = 1/2\rho g$
- $\gamma = \rho g$
- $\beta = \gamma / \rho$

18. Водонепроницаемый слой называют.....

- песок
- гравий

	- суглин	иок
	- водоуг	пор
	19.	Выполнения критерия Ньютона соблюдается при условии
	- <i>Ne</i> _" ≺	Ne.,
	- Ne _" ≻	
	- $Ne_{_{H}} \neq$	
	$-Ne_{_{\mathit{H}}}=$	···
	19a.	В закрытом сосуде эпюра избыточного давления в общем виде имеет вид
	- трапет	
	- треуго	
	- квадра	
	- '	угольника
	196.	Вакуумметрическое давление в общем случае равнодавлений весового и избыточного
	•	абсолютного и весового
	•	аосолютного и весового такое по весового такое по постава по
	_	ти абсолютного и поверхностного
	- разнос 19в.	
жил		В гидравлике фильтрационных потоков используют удельную э потока
фили	- $q = kS$	
	-	
	-q=kih	· ·
	-q=kih	n_0
	-q=Qi	S
	19г.	Высота подъема воды в открытом пьезометре составляет 11м, а точка
его	присоед	цинения заглублена на 10м под уровень воды, Тогда избыточное
пове	рхностн	ое давление равноатм.
	- 1	
	- 0,1	
	- 0,21	
	- 0	
	19д.	Величина $\alpha V^2/2g$ в энергетической интерпретации уравнения
Берн	іулли дл	ия установившегося движения вязкой жидкости при действии сил тяжести
назы	івается.	напором
	- гидрод	цинамическим
	- гидрос	статическим
		иетрическим
	- скорос	
	20.	Гидравлический радиус прямоугольного живого сечения со сторонами
0,5м	_	вен м.
	- 0,2	
	- 0,5	
	- 0,1	
	- 0,75	Furnan autorova na autorova au
1 5 1	20а. равен	Гидравлический радиус прямоугольного живого сечения со стороной 1 и
1,3M	- 0,15	•••••M
	- 0,13	
	- 1,5	
	- 0,6	
	21.	Гидростатическое давление в точке согласно первому свойству

- всегла является сжимающим
- не всегда действует по внешней нормали к площадке действия
- не всегда является сжимающим или растягивающим в зависимости от угла наклона плошалки
 - всегда является растягивающим
- 22. Гидравлически наивыгоднейшим сечением канала называют такое, при котором при заданной площади живого сечения пропускная способность канала будет наибольшей, при этом коэффициент шероховатости и уклона дна заданы и.....
 - увеличиваются от сечения к сечению
 - уменьшаются от сечения к сечению
 - неизменны
 - являются переменными величинами
- 23. Гидравлическим уклоном называется отношение потерь.....по длине участка к длине участка.
 - давлений
 - скоростей
 - напора
 - потенцианальной энергии
- 24. Гидростатическое давление в точке согласно второму свойству......угла наклона площади действия.
 - не зависит от
 - уменьшается с увеличением
 - увеличиется с увеличением
 - не зависит только в открытом сосуде от
- 25. Грунт называют.....если его фильтрационные свойства не зависят от координат рассматриваемой точки.
 - однородным
 - анизотропным
 - изотропным
 - неоднородным
- 26. Гидравлический прыжок в предельном положении образуется непосредственно у сооружения или у места перелома дна и характеризуется отношением....... Где $\mathbf{h}^{/\prime}$ вторая сопряженная глубина, м; \mathbf{h}_6 глубина воды в нижнем бъефе, м.
 - $h'' \neq h_{\scriptscriptstyle E}$
 - $h'' > h_E$
 - $-h''=h_{\scriptscriptstyle E}$
 - $h'' \prec \prec h_{\scriptscriptstyle E}$
- 27. Глубина потока, при которой удельная энергия сечения для заданного расхода в данном русле достигает минимального значения, называется.....глубиной.
 - максимальной
 - нормальной
 - сопряженной
 - критической
- 27а. Гидравлический наивыгоднейший профиль канала это профиль, в котором при заданной величине уклона и шероховатости заданный расход проходит при min площади.

- min
- нулевой
- несущей
- max
- 28. Два открытых бака соединены простым длинным трубопроводом постоянного диаметра 100мм (модуль расхода K=53,9 л/c). Если перепад уровней в баках составляет 2,5м, а длина его 25м, то расход жидкости в трубе равен....л/с.
 - 34.1
 - 2,6
 - 26,0
 - 17,05
- 29. Два открытых бака соединены простым длинным трубопроводом постоянного диаметра 100мм (модуль расхода K=53,9 л/c). Если расход составляет 12л/c, а длина трубопровода 50м, то перепад уровней в баках равен.....м.
 - -2,5
 - 4,7
 - 25
 - -14,7
- 30. Два открытых бака соединены простым длинным трубопроводом постоянного диаметра 150мм (модуль расхода К=160,62 л/с). Если расход жидкости в трубе составляет 15л/с, а перепад уровней в баках равен 3м, то длина трубопровода составитм.
 - 86
 - 344
 - 43
 - 172
- 31. Для выявления составления потока (бурное, спокойное или критическое) сопоставляем фактические значения.....глубины потока и наибольшей глубиной потока.
 - максимальной
 - нормальной
 - сопряженной
 - критической
- 32. Дифференциальное уравнение движения невязкой жидкости (уравнение Эйлера) имеет вид......

$$X - \frac{1dp}{\rho dx} = \frac{du_X}{dt};$$

$$-Y - \frac{1dp}{\rho dy} = \frac{du_y}{dt};$$

$$Z - \frac{1dp}{\rho dz} = \frac{du_z}{dt}.$$

$$Z - \frac{dp}{dz} = \frac{du_y}{dz}$$

$$Z - \frac{dp}{dz} = \frac{du_z}{dt}.$$

$$X - \frac{1dp}{\rho dy} = \frac{du_X}{dt};$$

$$Y - \frac{1dp}{\rho dz} = \frac{du_y}{dt};$$

$$Z - \frac{1dp}{\rho dx} = \frac{du_Z}{dt}.$$

33	3.	Для обеспечения подобия необходимо выполнение,а также
выпол	нение	условий однозначности явлений в натуре и на модели.
-]	нераве	нства масштабов моделирования
-]	критер	иев подобия
-]	нераве	нства масштабных множителей
-]	нераве	нства критериев подобия
34		Диаметр малого отверстия уменьшится в 2 раза, то скорость истечения
	-	овершенном сжатии
-	•	пится в 1 раз
-	•	ится в 4 раза
		ится в 2 раза
35	•	пится в 2 раза
		Для точного измерения расходов воды в каналах на прямолинейных
•	_	меняют водосливы
	перехв	
		етчика
	•	авливатели
	водоме	•
30		Движение грунтовых вод называется
	суффоз	
	фильтр абрази	
	аоразио эрозие	
	-	
37		Два открытых бака соединены простым длинным трубопроводом
		диаметра 150мм (модуль расхода К=160,62л/с). Если перепад уровней в
	состав 34,1	ляет 4,5м, а длина его 55м, то расход жидкости в трубе равенл/с.
	45,95	
	1 5,95	
	4,6	
	7,0 7 a.	Диаметр малого отверстия уменьшится в 2 раза, то расход их малого
		ри совершенном сжатии.
- 1	уменьц	шится в 4 раз
- :	увелич	ится в 2 раза
- :	увелич	ится в 2 раза
- :	умены	пится в 2 раза
37	7б.	Два открытых бака соединены простым длинным трубопроводом
постоя		диаметра 150мм (расходная характеристика К=160,62л/с). Если длина
		вляет 50м, а перепад уровней в баках равен 3м, то скорость жидкости в
		ем/с.
	3,44	
	4,72	
	4,46	
	2,23	
		Две категории сил, которые могут действовать в жидкости и газах
		и тягости
	-	ия и движения

- массовая и поверхностная
- инерции и трения
- 37г. Динамическое подобие между покоящимися соответствуют критериев Ньютона
 - $Ne_H = Ne_M$
 - $Ne_H \neq Ne_M$
 - $Ne_H > Ne_M$
 - $Ne_H \prec Ne_M$
- 37д. Динамическое подобие между на модели и в натуре обеспечивается при следующем соотношении критериев Архимеда
 - $A\gamma_H > A\gamma_M$
 - $A\gamma_H \prec A\gamma_M$
 - $A\gamma_H \neq A\gamma_M$
 - $A\gamma_H = A\gamma_M$?
- 37е. Динамическое подобие между потоком на модели и в натуре обеспечивается при следующем соотношении критериев Ньютона
 - $Ne_H = Ne_M$
 - $Ne_H \neq Ne_M$
 - $Ne_H > Ne_M$
 - $Ne_H \prec Ne_M$
- 373. Движение жидкости, при котором происходят изменения (пульсация) местных скоростей, приводящие к перемешиванию жидкости, называют.....
 - турбулентным
 - кавитацией
 - ламинарным
 - переходным
- 37и. Динамическое подобие между потоком на модели и в натуре обеспечивается при следующем соотношении критериев Эйлера:
 - $Eu_H = Eu_M$
 - $Eu_H \neq Eu_M$
 - $Eu_H \succ Eu_M$
 - $Eu_H \prec Eu_M$
- 37к. Два открытых бака соединены простым длинным трубопроводом постоянного диаметра 100мм (расходная характеристика K=53,9л/c). Если расход жидкости в трубе составляет 30л/c, а перепад уровней в баках равен 4м, то длина трубопровода составит.....м.
 - 129
 - 186
 - 93
 - 12.9
- 37л. Динамическое подобие между потоком на модели и в натуре обеспечивается при следующем соотношении критериев Фруда:
 - $Fr_{\mu} \prec Fr_{\mu}$
 - $Fr_{u} \neq Fr_{u}$
 - $Fr_{...} \succ Fr_{...}$
 - $Fr_{\mu} = Fr_{\mu}$

37м. Динамическое подобие между потоком на модели и в натуре
обеспечивается при следующем соотношении критериев Рейнольдса:
- $Re_H = Re_M$
- $Re_H \neq Re_M$
- $\operatorname{Re}_H \succ \operatorname{Re}_M$
- $\operatorname{Re}_H \prec \operatorname{Re}_M$
37н. Два открытых бака соединены простым длинным трубопроводом
постоянного диаметра 100мм (модуль расхода К=53,9л/с). Если перепад уровней в
баках составляет 4м, а длина его 80м, то расход жидкости в трубе равенл/с
- 24,1
- 120,058
- 12,05
- 2,41
38. Если перепад уровней воды Z=1,5м, то скорость истечения воды из
малого отверстия в стенке открытого бака при совершенном сжатии и истечении под
уровень, равнам/с.
- 2,13 - 4,27
- 4,27 - 6,72
- 3,36
39. Если перепад уровней воды Z=3,5м, то скорость истечения воды из
внешнего цилиндрического насадка в стенке открытого бака и истечении под
уровень, равнам/с.
- 2,13
- 4,27
- 4,45
- 6,8
40. Единицами измерения удельного веса являются $\kappa H/M^2$
- KH/M - H/m ³
- 10 M - Η/κτ ⁴
- кг/см ³
41. Если между соответствующими линейными размерами существует
постоянное соотношение, то два критерия являютсяподобными.
- статически
- кинематически
- геометрически
- динамически
42. Если I – линейный размер, а – ускорение, Р – сила, W – объем, то
кинетическое подобие записывается формулой
$-\frac{P_{\scriptscriptstyle H}}{P_{\scriptscriptstyle M}} = M_{\scriptscriptstyle \Gamma} \qquad -\frac{l_{\scriptscriptstyle H}}{l_{\scriptscriptstyle M}} = M_{\scriptscriptstyle I} \qquad -\frac{W_{\scriptscriptstyle H}}{W_{\scriptscriptstyle M}} = M_{\scriptscriptstyle W} \qquad -\frac{a_{\scriptscriptstyle H}}{a_{\scriptscriptstyle M}} = M_{\scriptscriptstyle a}$
43. Единицами измерения величина гидравлического радиуса для
установившегося плавно изменяющегося движения жидкости в открытом русле
являются
$- m^2$
$- M^{1/2}$
$- \text{ M/c}^2$

- M

44. Если движение грунтовых вод происходит со свободной поверхностью, на котором давление равно атмосферному, то такое движение называют...... - безнапорным - неоднородным - напорным - полунапорным Если расход воды равен 15л/с, а перепад уровней составляет 5м, то диаметр малого отверстия, расположенного в стенке открытого бака при истечении под уровень и совершенном сжатии, равен.....см. - 2,48 - 3,98 - 5,58 -2,7946. Единицей измерения средней скорости является...... $- c/M^3$ $- M^2/c$ $- c/cm^4$ - M/c47. Если перепад уровней воды Z=2,5м, а диаметр отверстий 5см, то расход воды при истечении из малого отверстия в стенке открытого бака при совершенном сжатии и истечении под уровень, равен.....л/с. -2,77- 5.57 - 8,5 - 9,9 48. Если расход воды равен 10л/с, а перепад уровней составляет 4м, то диаметр малого внешнего цилиндрического насадка, расположенного в стенке открытого бака при истечении под уровень, равен.....см. - 5,58 - 8,4 - 4.2 - 6,3 измерения коэффициента 49. Единицами динамической вязкости являются..... **-** Ст - *∏a* · *c* - $\kappa\Gamma/M^2$ - Па 49a. Если I –линейный размер, V – скорость, T – время, а – ускорение, то геометрическое подобие записывается формулой. $-\frac{V_H}{V_M} = M_V$

 $-\frac{T_H}{T_M} = M_T$

 $-\frac{a_H}{a_M} = M_a$

 $-\frac{\ell_H}{\ell_H} = M_\ell$

- 49б. Если при установившемся движении траектории, описываемые двумя сходными частицами потоков, геометрически подобны, то потоки являются.....подобными
 - динамически
 - геометрически
 - кинематически
 - статически
- 49в. Если ввести в движущуюся жидкость находящуюся в стекленной трубке, подкрашенную жидкость и обнаружить, что жидкость движется, как на данном рисунке то речь идет о.....режиме движения
 - переходной
 - кавитационный
 - -турбулентный
 - ламинарный
- 49г. Если I –линейный размер, P сила, W объем, а ускорение, то кинематическое подобие записывается формулой.

$$-\frac{W_H}{W_M} = M_W$$

$$-\frac{P_H}{P_M} = M_T ?$$

$$-\frac{a_H}{a_M} = M_a$$

$$-\frac{\ell_H}{\ell_M} = M_\ell$$

- 49д. Если расход воды=12л/с, а диаметр отверстия составляет 5см, то перепад уровней воды при истечении из малого отверстия расположенного в стене открытого бака при истечении под уровень и совершенном сжатии, равенм.
 - 3,86
 - 7,72
 - 4,96
 - 2,48
- 49е. Если скорость истечения равна 2м. то перепад уровней воды при истечении из внешнего цилиндрического насадка расположенного в стенке открытого бака при истечении под уровень равен........м.
 - -2,4
 - 0,6
 - 1.2
 - 0,3
- 49ж. Если l –линейный размер, P сила, W объем, V скорость, то кинематическое подобие записывается формулой

$$-\frac{W_H}{W_M} = M_W$$

$$-\frac{P_H}{P_M} = M_T$$

	$-\frac{v_H}{V_M} = M_V$		
	$V_{\scriptscriptstyle M}$		
	$-\frac{\ell_H}{\ell_M} = 1$	$oldsymbol{M}_{\ell}$	
	493.	Если перепад уровней воды Z=2м, а диаметр отверстий 5см, то расход	
водь		течении из внешнего цилиндрического насадка, расположенного в стенке	
	-	ака при истечении под уровень равенл/с.	
•	- 5,57		
	- 10,1		
	- 4,77		
	- 6,5		
	49и.	Единицей измерения площади живого сечения является	
	- cм ⁴	-	
	- м ³		
	- M ²		
	- M		
	50.	Заполните пропуск. Раздел гидромеханики, который изучает законы	
двих	кения ж	идкости в зависимости от приложенных к ним сил, называется	
	- динам	икой жидкости	
	- статик	ой жидкости	
	- кинема	- кинематикой жидкости	
	- руслов	вой жидкости	
	50a.	Закон $V = kJ$ называется законом	
	- квадратичного фильтра		
	- Дарси или законом линейной функции		
	- скоростей		
	- уклоно		
	50б.	Зависимость $ ho gh$ в общем случае определяетдавление	
	- избыто	очное	
	- внешнее		
	- абсолютное		
	- вакуумметрическое		
	50в.	Заполните пропуск	
	Благодо	·	
ypae	внений р	авновесия и движения жидкости.	
	- постоянству давления		
		нству температуры	
		зе сплошности	
	-	римости	
	51.	Использовать внесистемные единицы в формулах для численных	
расч	етов		
	- можно		
	- нельзя, но с исключениями		
	- можно, но с исключениями		
		рически нельзя	
	52.	Избыточное гидростатическое давление равнодавлений.	
	•	весового и атмосферного	
		абсолютного и весового	
	_	ти абсолютного и весового	
	- разнос	ти абсолютного и атмосферного	

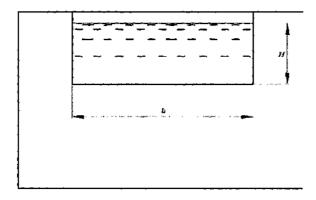
- 52а. Истечение жидкости из малого отверстия, заглубленного под уровень на 1м совершенное сжатие.
 - -1,83
 - 5,5
 - -2,75
 - 4.3
- 53. Коэффициент гидравлического трения зависит только от относительной шероховатости в области.....турбулентного режима.
 - доквадратичного сопротивления
 - гидравлически гладких русел
 - гладких русел
 - квадратичного сопротивления
 - 54. Коэффициент расхода водослива отражает......
 - отношение геометрического напора к перепаду на водосливе
 - величину скорости подхода к водосливу
 - высоту грани водослива
 - конструктивные особенности водослива
- 55. Кривая свободной поверхности фильтрационного потока (на рисунке кривая А-В) называется......

- линей фильтрационного потока
- линией напорного тока
- линей русла
- кривой депрессии
- 56. Коэффициент скорости внешнего круглоцилиндрического насадка равен......
 - -0.82
 - 0.62
 - 0,9
 - 1,0
- 57. Коэффициент местных сопротивлений в большинстве случаев находится.....
 - расчетными способами эмпирическим формулам
 - по справочникам, составленным на основе эмперических исследований
 - расчетными способом по теоретическим формулам
 - путем математических выводов
- 58. Коэффициент сопротивления при резком расширении потока, если диаметр круглой трубы увеличивается в 2 раза, а коэффициент отнесен к скоростному напору после расширения, равен.......
 - 4.0
 - -2.0
 - 8,0
 - 9,0

	58a.	Коэффициент сопротивления при резком сужении потока, если диаметр
кру	глой тру	бы уменьшается в 2 раза, а коэффициент отнесен к скоростному напору
посл	1е сужен	ия, равен
	- 0,5	
	- 0,25	
	- 1,0	
	- 0,375	
	59.	Кипение воды при температуре ниже 100 ⁰ C связано с (со)
		проводностью жидкости
		нением величины поверхностного натяжения
	•	нием давления на поверхности жидкости
		орением газов и жидкости
	- растьс 60.	•
D.X.		Коэффициент гидравлического трения зависит только от числа
Реил		в областитурбулентного режима.
		их русел
		ных русел
	_	атичного сопротивления
		дратичного сопротивления
	60a.	Коэффициент сжатия при истечении из малого отверстия равен
	- 0,63-0	·
	- 0,98-0	,99
	- 1-1,1	
	- 0,82-0	,83
_	60б.	Коэффициент местных потерь на входе потока в трубу из бассейна или
бака	а равен	
	- 5	
	- 1	
	- 2	
	- 0,5	
	60в.	Коэффициент местных потерь на выходе потока из трубы в бассейн
болі	_	азмера равен
	- 5	
	- 1	
	- 2	
	- 0,5	
	60г.	Корректив кинетической энергии потока при ламинарном движении
жид		
	кости в	трубе (коф.Кориолиса) равен
	кости в - 1,33	
	- 1,33 - 1,5	
	- 1,33 - 1,5 - 2,0	
	- 1,33 - 1,5 - 2,0 - 1,0	трубе (коф.Кориолиса) равен
	- 1,33 - 1,5 - 2,0 - 1,0 60 д.	трубе (коф.Кориолиса) равен Кинематическая вязкости определяется следующей зависимостью
	- 1,33 - 1,5 - 2,0 - 1,0 60 д.	трубе (коф.Кориолиса) равен Кинематическая вязкости определяется следующей зависимостью
	- 1,33 - 1,5 - 2,0 - 1,0 60 д. - $\mu = \frac{V}{\rho}$	трубе (коф.Кориолиса) равен Кинематическая вязкости определяется следующей зависимостью
	- 1,33 - 1,5 - 2,0 - 1,0 60 д. - $\mu = \frac{V}{\rho}$	трубе (коф.Кориолиса) равен Кинематическая вязкости определяется следующей зависимостью
	- 1,33 - 1,5 - 2,0 - 1,0 60 д. - $\mu = \frac{V}{\rho}$ - $\mu = \frac{0}{0}$	трубе (коф.Кориолиса) равен
	- 1,33 - 1,5 - 2,0 - 1,0 60 д. - $\mu = \frac{V}{\rho}$ - $\mu = \frac{0}{0}$	трубе (коф.Кориолиса) равен
	- 1,33 - 1,5 - 2,0 - 1,0 60 д. - $\mu = \frac{V}{\rho}$	трубе (коф.Кориолиса) равен

$-v=\frac{\mu}{}$	
ρ 60e.	Коэффициент скорости внутреннего круглоцилиндрического насадка
равен	
- 0,62	
- 1,0	
- 0,71	
- 0,82	
61.	Максимальное снижение местных потерь происходит при угле
	около
- 40 ⁰	
-10^{0}	
- 20 ⁰	
- 6 ⁰	
62.	Модуль расхода (расходная характеристика) К имеет
размерность	?•••••
$- M^{2}/c$	
- M ²	
$- M^{3}/c$	
- M/c	
63.	Надвинутый или затопленный гидравлический прыжок образуется
непосредств	енно у сооружения или у места перелома дна и характеризуется
	л Где \mathbf{h}'' - вторая сопряженная глубина, м; $\mathbf{h_6}$ – глубина воды в
нижнем бьес	<u> </u>
- h" ≻≻	B .
$-h'' \prec h$	R_E
- $h'' > h$	
-h''=h	<i>D</i>
	Б
64.	
равноа - 1,5	TIM.
- 1,5 - 10	
- 10 - 0	
- 0,9	
64a.	На модели исследуется явление, имеющее такую же физическую
	о и происходящее в натуре примоделировании
- аналог	· · · · · · · · · · · · · · · · · · ·
- числен	
- физич	
-	атическом
Marem	an iodon
64б.	Напор увеличится в 2 раза, то скорость истечения из малого отверстия
	енном сжатии
	нится в 4 раза
-	нится в 1,4 раза
•	нится в 2 раза
- умены	шится в 1,4 раза

Напор увеличится в 4 раза, то скорость истечения из малого отверстия


64в.

при совершенном сжатии - увеличится в 4 раза

- увеличится в 1,4 раза
- увеличится в 2 раза
- уменьшится в 1,4 раза
- 64г. Необходимый напор в начале магистрали (или высота водонапорной башни) при расчете сложного разветвления незамкнутого трубопровода в случае горизонтальной местности определяется
- сумой потерь на всех участках магистрали и необх. свободного напора в конце магистрали
 - сумой всех потерь на участках магистрали и боковых ответвлений
 - сумой всех потерь на участках магистрали
 - сумой всех местные потерь

65.

На рисунке изображен.....водослив.

- треугольный
- пароболический
- трапецеидальный
- прямоугольный
- 66. Несовершенный или волнистый гидравлический прыжок наблюдается с образованием последовательных постепенно затухающих волн при отношении глубин, если....... Где \mathbf{h}'' вторая сопряженная глубина, м; \mathbf{h}' первая сопряженная глубина, м.

$$-h'' \times h' \prec 2$$

$$-\frac{h''}{h'} \prec 2$$

$$-\frac{h''}{h'} \rightarrow > 10$$

$$-\frac{h''}{h'} = 0.2$$

- 67. Напорная линия по отношению к пьезометрической при расчете простого длинного трубопровода распологается.....
 - в зависимости от диаметра трубы
 - на одном уровне
 - всегда ниже
 - всегда выше
- 68. Отношение максимальной скорости жидкости к средней скорости в круглой трубе при ламинарном режиме движения равно......
 - 1.0
 - -2,0
 - 1,2

- 1.5
- 69. Отношение средней скорости движения жидкости к максимальной скорости жидкости в круглой трубе при турбулентном режиме движения равно......
 - 1,0-1,4
 - 0,7-0,9.....?
 - 2,0-3,4
 - 0.4-0.5
 - 70. Особенностью ньютоновских жидкостей является, что для них......
 - модуль упругости изменяется с увеличением температуры
 - справедлив закон внутреннего трения Ньютона
 - вязкость не зависит от температуры давления
 - несправедлив закон внутреннего трения Ньютона
- 71. Общее дифференциальное уравнение установившегося плавно изменяющегося движения жидкости в открытом русле имеет вид.....где h наибольшая глубина потока в рассматриваемом живом сечении, m; l расстояние по уклону, m; i уклон дна; Q расход потока, m^3/c ; w площадь живого сечения, m^2 ; C коэффициент Шези, $m^{1/2/c}$; R гидравлический радиус, m; s характерный поперечный размер, m; g ускорение свободного падения, m/c^2 ; α коэффициент Кориолиса; B ширина живого сечения русла по верху, m.

иолиса; В — ширина живого сечения русла по верху, м.

$$-\frac{dh}{ds} = \frac{i - \frac{Q^2}{W^2 C^2 R} - \frac{\alpha Q^2 dwdl}{gwdsdw}}{1 + \frac{\alpha Q^2 B}{gw^3}} - \frac{du}{dl} = \frac{i - \frac{Q^2}{W^2 C^2 R}}{\frac{\alpha Q^2 B}{gw^3}}$$

$$-\frac{dQ}{dl} = \frac{\frac{Q^2}{W^2 C^2 R} - \frac{\alpha Q^2 dwds}{gwdsdl}}{1 + \frac{\alpha Q^2 B}{gw^3}} - \frac{dh}{dl} = \frac{i - \frac{Q^2}{W^2 C^2 R} - \frac{\alpha Q^2 dwds}{gwdsdl}}{1 + \frac{\alpha Q^2 B}{gw^3}}$$

- 72. Относительной шероховатостью называется отношение......
- радиуса трубы к абсолютной шероховатости
- абсолютной шероховатости к радиусу трубы
- абсолютной шероховатости к диаметру трубы
- диаметр трубы к абсолютной шероховатости
- 72а. Отношение объёма пор к объёму грунта достаточно большому по сравнению с размерами частиц грунта и пор наз
 - пористостью
 - скоростью фильтрации
 - коэф. фильтрации
 - диаметром частиц
- 73. При расчете длинного трубопровода потери напора на каждом участке в случае параллельного соединения участков......
 - равны
 - больше при большей длине участка
 - зависят от длины и диаметра участка
 - больше при меньшем диаметре участка
 - 74. По зависимости p_A - γ h можно определить......

По зависимости p_A - ρg h можно определить

- внешнее поверхностное давление
- избыточное давление
- абсолютное давление

- весовое давление

74а. По зависимости $p_A + \gamma$ h можно определить......сосуда

- абсолютное давление для открытого
- избыточное давление для открытого
- абсолютное давление для закрытого
- избыточное давление для закрытого
- - -0.5
 - 1,5
 - 2
 - 1

76. При изучении явлений в гидравлике применяются модели.......

- экспериментальные без подобия явлений
- стационарные без подобия явлений
- с применением теории подобия и определенных методик моделирования
- аналитические без подобия явлений

76а. По зависимости P_A - P_0 можно определить давление

- поверхностное
- -манометрическое
- вакуумметрическое
- избыточное

766. Повышение температуры жидкости может привести к......

- переходу из турбулентного режима в ламинарный
- отсутствию ламинарного режима
- отсутствию турбулентного режима
- переходу из ламинарного в турбулентный режим

76в. Поверхности равного давления во вращающемся сосуде, являются

- плоскими вертикальными
- параболоидами вращения
- плоскими горизонтальными
- гиперолоидами вращения

76г. При увеличении числа Рейнольдса, при турбулентном движении жилкости толшина вязкого подслоя

- отсутствует
- увеличивается
- не изменяется
- уменьшается

76д. При расчете длинного трубопровода необходимо учитывать местные потери в случае

- истечения в атмосферу
- наличия поворотов
- если местные сопротивления составляют более 10% гидравлических потерь
- истечения под уровень

77. При преобладающем влиянии сил тяжести потоки моделируются по критерию.....

- Рейнольдса
- Фруда
- Эйлера....?
- Архимеда

78.	Подобными	называются	явления,	происходящие	В	геометрически
подобных	системах одина	аковой физиче	еской прир	оды, когда один	нак	овые величины
имеют меж	кду собой постоя	нные отноше	ния, которі	ые называются		•••

- внутренними силами
- внешними силами
- масштабами и коэффициентами масштабов
- поверхностными силами

Простым называют трубопровод...... **79.**

- не имеющий боковых ответвлений
- постоянного диаметра
- не имеющий местных потерь
- не имеющий поворотов

80.	Принятым обо	значением объёмного	расхода является
-----	--------------	---------------------	------------------

- G
- Q S

81. Параметр кинетичности потока определяется по зависимости, где Q - расход потока, м³/с; w - площадь живого сечения потока, м²; q - ускорение свободного падения, M^2/c ; α - коэффициент Кориолиса; B - ширина живого сечения русла по верху, м.

$$- \Pi_K = \frac{\alpha Q^2}{w^3}$$

$$-\Pi_K = \frac{\alpha B}{g}$$

$$- \Pi_K = \frac{\alpha Q^2 B}{g w^3}$$

$$- \Pi_K = \frac{Q^2}{gw^3}$$

Приблизительная сила избыточного гидростатического давления в закрытом сосуде на горизонтальную прямоугольную площадку равна кН. При условии, что она заглублена в воду на 4 м, длина стенки 3 м, а ширина 6 м. поверхностное избыточное давление составляет 20 кПа.

- 720
- 1080
- 360
- 180

Площадь живого сечения потока, или средняя скорость потока 82a. составляет 0.5м/с, а расход 1м³/с, равна.....м².

- 1.5
- 2
- 1
- -0.5

При истечении из малого отверстия (при прочих условиях) приводит к минимальному расходу жидкости сжатие

- неполное не совершенное
- неполное не совершенное

- полное совершенное
- неполное совершенное
- 84. Потери напора по длине в области квадратичного сопротивления шероховатых русел пропорциональны средней скорости в степени
 - -1,75
 - 2,7
 - 1,0
 - 2,0
- 85. Полный перепад на водосливе или напор на водосливе с учетом скорости подхода определяется по зависимости, где z геометрический перепад на водосливе, м; α коэффициент Кориолиса; V_O скорость воды в верхнем бъефе в измеряемом сечении или скорость подхода, м/с; q ускорение свободного падения, м²/с.

$$-z_0 = 2z + \frac{V_0^2}{g}$$

$$-z_0 = z + \frac{\alpha V_0^2}{2g}$$

$$-z_0 = \frac{\alpha V_0^2}{2g}$$

$$-z_0 = z + \frac{\alpha V_0^2}{g}$$

- 86. Произведение площади эпюры на ширину прямоугольной стенки позволяет определить давление.
 - манометрическое
 - абсолютное
 - силу соответствующего гидростатического
 - соответствующее
- 87. При спокойном состоянии потока при равномерном движении воды в открытом русле по уклонам выполняется условие......
 - $i \prec \prec i_{\kappa p}$
 - $i \succ i_{\kappa p}$
 - $-i=i_{\kappa n}$
 - $i \prec i_{\kappa p}$
 - 88. Принятым обозначением кинематической вязкости является......
 - *-* δ
 - *-* η
 - φ
 - ν
 - 89. Подобно изучил и описал режим движения жидкости.....
 - Бернулли
 - Рейнольдс
 - Эйлер
 - Ломоносов
- 89а. При равном напоре и диаметре расход жидкости при истечении минимален у насадка
 - конического сходящегося
 - внешнего цилиндрического
 - конического расходящегося

- внутреннего цилиндрического

89б. Поверхностное давление в общем случае можно определить как....

- разность абсолютного и избыточного
- сумму абсолютного и весового
- разность абсолютного и избыточного
- сумму весового и избыточного

89в. При расчете местных потерь принимается область.....сопротивления

- кубического
- квадратичного
- линейного
- доквадратичного

89г. При гидравлическом расчете насадков учитываются

- потери по длине при ламинарном движении
- только местные потери
- все виды потерь
- только потери по длине

90. Пьезометрический уклон кривой депрессии имеет размерность.....

- безразмерный
- секунды
- метры
- M/c

91. Потенциальный напор в покоящейся жидкости величина постоянная.....

- для всех точек данного объема
- только для всех одинаково заглубленных точек
- только при открытом сосуде
- только при закрытом сосуде

92. Поверхности равного давления в покоящейся жидкости, находящейся под действием только силы тяжести, располагаются......

- всегда горизонтально
- горизонтально только в открытом сосуде
- вертикально только в открытом сосуде
- всегда вертикально

93. При бурном состоянии потока по параметру кинетичности выполняется условие.....

- $-\Pi_{K}=1$
- Π_K ≺≺ 1
- $\Pi_{\scriptscriptstyle K} \prec 1$
- $\Pi_K \succ 1$

94. По основному уравнению гидростатики абсолютное давление в точке в общем случае равно...... и весового давлений.

- разности поверхностного
- разности избыточного
- сумме избыточного
- сумме внешнего поверхностного

94а. Правильное определение науки «Гидравлика»: гидравлика – это......

- раздел механики твердого тела, наука изучающая законы равновесия и движения способы приложения этих законов к решению задач инженерной практики
- раздел механики твердого тела, изучающий законы равновесия и движения жидкости (газов)

- часть механики, изучающая законы равновесия и движения жидкости (газов)
- раздел физики сплошной среды изучающий законы равновесия и движения идеальных и реальных жидкостей
- 946. Приблизительная сила избыточного гидростатического давления в открытом сосуде на вертикальную прямоугольную стенку, заглубленную по верхнюю кромку в воду равна.....кН. При условии, что высота стенки 4 м, а ширина 6 м.
 - 400
 - 120
 - 200
 - 800

94в. При расчете длинного трубопровода пренебрегают

- потерями по длине и скоростным напором
- скоростным напором
- местными потерями
- местными потерями

94г. При расчетах живое сечение потока принимается плоским......

- при резко изменяющемся движении
- при плавно изменяющемся и параллельно струйном движении
- при параллельно струйном движении
- только при плавно изменяющемся движении
- 94д. Приблизительная сила избыточного гидростатического давления в закрытом сосуде на вертикальную прямоугольную стенку, заглубленную по верхнюю кромку равна кН. При условии, что высота стенки 2 м, а ширина 8м. Поверхностное избыточное давление составляет 50 кПа
 - 900
 - 160
 - 960
 - 1120
- 94e. Площадь поперечного сечения для открытого трапецеидального канала определяется по зависимости....., где b ширина канала по дну, м; m коэффициент заложения откоса канала; h глубина потока, м.
 - $-\omega = bmh$
 - $\omega = (b+m)h$
 - $\omega = (2b + m)h$
 - $-\omega = (b+m)h^2$
- 95. Равномерное движение жидкости характеризуется следующим признаком: русло.....
 - призматическое
 - круглое по сечению
 - в виде тетраэдра
 - не имеет свободной поверхности
- 96. Расход жидкости малого отверстия диаметром 10см, заглубленного под уровень на 2м (сжатие считать совершенным), равен.........м³/с.
 - 0.06
 - -0,15
 - 0.03
 - -0.3
- 96а. Расход для параболического водослива с тонкой стенкой определяется по формуле $M=2{,}768\sqrt{p_{_{I\!\!I}}}$ параметр параболы
 - $Q = MH^2$
 - $O = MH^4$

$$- Q = 2MH^2$$

$$- Q = M/H^2$$

- 97. Расход для треугольного водослива с тонкой стенкой (с острым ребром) определяют по формуле.....
 - $Q = 1.4H^{5/2}$
 - $-Q = 14H^{5/2}$
 - $Q = 1.4H^{3/2}$
 - Q = 1.4H
- 97а. Расходы жидкости на каждом участке при последовательном соединении трубопровода
 - изменяются пропорционально диаметру трубы
 - равны
 - увеличиваются по длине участка
 - уменьшаются по длине участка
- 976. Расход при истечении жидкости из внешнего цилиндрического насадка при напоре H=3м и диаметре 0,1м равен
 - 0,043
 - -0.31
 - -0,43
 - 0,052
- 9766. Расход при истечении жидкости из внутреннего цилиндрического насадка при напоре H=3м к диаметре 0,1м равен
 - 0,043
 - 0.31
 - 0,43
 - 0,052
- 97в. Расход воды в квадратном сечении со сторонами 0,4м и средней скоростью 0,8м/с
 - -0.256
 - -0.128
 - 0,32
 - 1,28
- 97г. Расчет числа Рейнольдса для круглой цилиндрической трубы производим по формуле
 - Re = $\frac{Vh}{2g\theta}$
 - Re = $\frac{Vd}{9}$
 - Re = $\frac{2Vd}{g}$
 - Re = $\frac{Vd}{vg}$
- 98. Равномерное движение характеризуется следующим признаком местные сопротивления.....
 - уменьшается по длине потока
 - увеличивается по длине участка
 - в сечении увеличивается по глубине

- отсутствует
- 99. Расход жидкости при истечении, если к малому отверстию присоединить внутренний цилиндрический насадок......
 - увеличится в 1,32 раза
 - уменьшится в 1,32 раза
 - останется постоянной
 - увеличится в 1,15 раза
- 100. Расход для треугольного водослива с тонкой стенкой (с острым ребром) определяют по формуле......
 - Чиполетти
 - Шези
 - Дарси
 - Томсона
- 101. Равномерное движение жидкости характеризуется следующим признаком: шероховатость смоченной поверхности.....
 - увеличивается по длине участка
 - в сечении величина непостоянная
 - уменьшается по длине потока
 - по длине участка не изменяется
- 102. Расход для трапецеидального водослива с тонкой стенкой (неподтопленный водослив в виде равнобедренной трапеции с углом 14 градусов) определяют по формуле Чиполетти....., где b ширина водослива по низу, м; H геометрический напор, м.
 - $Q = 2.86bH^2$
 - $Q = 1.86H^{3/2}$
 - $Q = 1.86bH^{3/2}$
 - $Q = 2.86H^{3/2}$
- 103. Расход при истечении, если вместо внешнего цилиндрического насадка присоединить внутренний цилиндрический насадок......
 - увеличится в 1,16 раза
 - остается постоянной
 - уменьшится в 1,37 раза
 - уменьшится в 1,16 раза
- 104. Расход для трапецеидального водослива с тонкой стенкой (неподтопленный водослив в виде равнобедренной трапеции с углом 14 градусов) определяют по формуле
 - Чиполетти
 - Шези
 - Дарси
 - Томсона
- 105. Равномерное движение жидкости характеризуется следующим признаком: глубина и другие геометрические характеристики русла.....
 - не существуют
 - увеличиваются по длине участка
 - уменьшаются по длине потока
 - постоянные
- 105а. Расход при истечении жидкости из внутреннего цилиндрического насадка при напоре H=3м к диаметру 0,1м равен.......м³/с
 - 0.043

	- 0,051					
	- 0,43					
	- 0,51 1056.	Равиоманиоа	приманиа	минкости	характеризуется	епопущиним
		расход	движение	жидкости	характеризуется	следующим
-		чивается по длин	е участка			
	- умень					
	- по дли	ине участка посто	янный			
	- в сече	нии постоянный				
	106.		•	при увелич	ении поверхностн	ого давления
		кидкости				
	•	шится прямо про гся в зависимост	-		LITTE OFFILE	
		тея в зависимост чивается прямо п	-		ідкости	
	- увели - не мен	-	ропорционал	SHO		
	110 11101					
	107.				оормулой	
_	_	_	k – коэффиц	иент фильтр	ации, м/с; I – пьезо	метрический
•	_	ой депрессии.				
	V = 2I					
	-V = k $-V = kl$					
	$V = \kappa \iota$ $V = \kappa \iota$					
	108.		пиметп лпя і	ΙΛΠΥΚΌΥΓΠΛΓΟ	живого сечения с р	элиусом 0 4м
	100. H		римстр для т	1031y KP y 13101 0	AMBOTO CE TEHRA E P	ладиусом о, тм
-	- 0,628					
	- 1,256					
	- 0,314					
	- 2,512					
	109.	Скорость филі	ьтрации имее	т размерност	Ъ	
	- M/c					
	- M ² /C - C/M					
	- с/м - кг/с					
	110.	Сушность гиг	іотезы сплоі	шности закл	ючается в том, ч	то жилкость
		ается как			10 1401011 10 10 11,	iro mignocia
-	-	нуум, непрерывн				
	- сложн	ая среда с раство	ренными газа	ми, вещества	ми, имеющая разрыв	ы и пустоты
	-	имеющая разрыв	•			
		-			еленной температуре	
	111.	-			инего цилиндричес	кого насадка
_	напоре - 10,2	Н=2м. равно	M/c	•		
	- 10,2 - 5,1					
	- 7,1 - 7,4					
	- 3,7					
	111a.	Скорость исте	чения жидко	сти из внутр	еннего цилиндричес	ского насадка
		Н=3м. равно				,,
-	- 10,9	-				
	- 5,45					
	- 10,2					

- 5.1

1116. Силы внутреннего трения не возникают в жидкости

- не вязкой
- движущейся
- вязкой
- покоящейся
- 111в. Скорость истечения жидкости из малого отверстия, заглубленного под уровень на 1м равна (совершенное сжатие)
 - 2,75
 - 5,3
 - 4,3
 - -1.87

111г. С увеличением диаметра трубы пьезометрический уклон

- не меняется
- меняется в зависимости от величины потерь
- -увеличивается
- уменьшается
- 111д. Смоченный периметр для круглого живого сечения с радиусом 0,2м равен
 - -0.628
 - 0.8
 - 1,256
 - -0.314
- 112. Средняя глубина живого сечения потока определяется по зависимости....., где w площадь живого сечения, m^2 ; B ширина живого сечения русла по верху, м.

$$- h_{cp} = \frac{w}{B}$$

$$- h_{cp} = \frac{B}{w}$$

$$- h_{cp} = \frac{B+w}{B}$$

$$- h_{cp} = \frac{2w}{B}$$

112а. Сжимаемость – свойство

- сохранять свой объём при изменении температуры
- оказывать сопротивление относительно сдвигу слоев при изменении объема
- изменять свое состояние с изменением объема при постоянном давлении
- изменять свой объём при изменении давления

113. Сифон отличается от других простых трубопроводов, тем что......

- вся труба располагается выше уровня жидкости в питающем сосуде
- часть трубы располагается выше уровня жидкости в питающем сосуде
- вся труба располагается ниже уровня жидкости в питающем сосуде
- во всей трубе давление выше атмосферного
- 114. Среднюю скорость в открытом трапецеидальном канале определяют по зависимости......, где b ширина канала по верху, м; m коэффициент заложения откоса канала; h глубина потока, м; C коэффициент Шези, $\sqrt{\frac{M}{c^2}}$; R гидравлический радиус, м; i уклон дна канала.

-
$$V = bh + m\sqrt{Ri}$$

$$-V = 2b\sqrt{Ri}$$

-
$$V = \sqrt{Ri}$$

-
$$V = C\sqrt{Ri}$$

115. Средняя скорость для любого живого сечения в случае плавно изменяющегося движения грунтовых вод определяется по зависимости......., где S – площадь живого сечения, m^2 ; V – скорость фильтрации, m/c; k – коэффициент фильтрации, m/c; H – возвышение точки кривой депрессии, принадлежащей данному плоскому сечению, над произвольной горизонтальной плоскостью сравнения, величина представляет собой напор для рассматриваемого плоского вертикального сечения.

$$-V = -k\frac{dH}{dS}$$

$$-V = -k\frac{dk}{dS}$$

$$-V = -kSH$$

$$-V = -k\frac{dS}{dk}$$

- - пьезометрическим
 - скоростным
 - гидростатическим
 - гидродинамическим

117. Сжатие является неполным в случае.....

- если отверстие не примыкает к стенке сосуда
- в случае любого несовершенного сжатия
- если отверстие не примыкает кК дну сосуда
- если отверстие примыкает к стенке или дну сосуда
- 118. Средние скорости потока жидкости при плавно изменяющемся и параллельноструйном движении в соответствии с уравнением неразрывности.....
 - прямо пропорциональны площадям живых сечений потока
 - обратно пропорциональны площадям живых сечений
 - постоянны вдоль потока
 - зависят от времени
- 118а. Согласно закону Паскаля при увеличении поверхностного давления давление в жидкости
 - увеличивается на ту же величину
 - не меняется
 - уменьшается прямопропорционально
 - меняется в зависимости от физических свойств жидкости
- 118б. Скорость истечения, если к малому отверстию присоединить внешний цилиндрический насадок......
 - уменьшится в 1,8 раз
 - уменьшится в 1,18 раз
 - останется постоянной
 - увеличится в 1,2 раз

118в. Сечение с максимальным вакуумом в сифоне расположено
- непосредственно у начального сечения трубы
- в самой верхней части трубы
- посередине трубы
- непосредственно перед конечным сечением трубы
118г. С увеличением потерь по длине на данном участке трубы
пьезометрический уклон
- уменьшается
- не меняется
- меняется в зависимости от величины потерь
- увеличивается
119. Текучестью жидкости называют
- общее свойство для всех жидкостей, означающее способность течь под влиянием
изменения поверхностного натяжения
- особое свойство для некоторых жидкостей, означающее способность течь под
влиянием сдвигающих сил
- свойство жидкостей, означающее способность перемещаться без влияния
сдвигающих сил
- общее свойство для всех жидкостей, означающее способность течь под влиянием
самых малых сдвигающих усилий
120. Точка присоединения открытого пьезометра заглублена на 8м под
уровень воды, а избыточное давление над свободной поверхностью составляет 0,2атм.
Тогда высота подъема воды в открытом пьезометре равна
- 2
- 6
- 8
- 10
120а. Точка присоединения открытого пьезометра заглублена на 3м под
уровень воды, а абсолютное давление над свободной поверхностью составляет
0,95атм. Тогда высота подъема воды в открытом пьезометре равна
- 12,5
- 3,5
- 2,5
- 6,5
120б. Трубопровод можно считать коротким
- если местные потери составляют более 3-5% от потери по длине
- при длине менее 1000м
- при длине менее 10м
- если местные потери составляют менее 3-5% от потери по длине
120в. Точка присоединения открытого пьезометра заглублена на 6м под
уровень воды, а абсолютное давление над свободной поверхностью составляет 0,6атм.
Тогда высота подъема воды в открытом пьезометре равна
- 6 2
- 2
- 12

121. Уровнение равномерного движения жидкости в открытом русле имеет вид....., где Q – расход потока, m^3/c ; w – площадь живого сечения, m^2 ; C –

коэффициент Шези, $\sqrt{\frac{M}{c^2}}$; R – гидравлический радиус, м; i – уклон дна.

- 0

 $-Q = Ri\sqrt{wC}$

$$-Q = iwC\sqrt{R}$$

-
$$Q = wC\sqrt{Ri}$$

$$Q = Rw\sqrt{Ci}$$

121а. Уравнение неподтопленного водослива

-
$$Q = mb\sqrt{2g}$$

-
$$Q = b\sqrt{gH_0}$$

-
$$mb^7 \sqrt{gH_0}$$

-
$$Q = mb\sqrt{2gH_0^{3/2}}$$

122. Удельный расход при фильтрации имеет размерность.....

- m^2/c
- кг/c
- M³/c
- M/c

123. Удельная энергия сечения потока обозначается символом и определяется по зависимости.....

$$- \Im = h + \frac{2\alpha V^2}{2g} = h + \frac{4\alpha Q^2}{2gw^2}$$

$$- \Im = h + \frac{2\alpha V^2}{2g} = h + \frac{\alpha Q^2}{2gw^2}$$

$$- \Im = h + \frac{V^2}{2g} = h + \frac{Q^3}{2gw^3}$$

$$- \Im = \frac{\alpha V^2}{2g} = \frac{\alpha Q^2}{2gw^2}$$

123а. Уравнение Бернулли для установившегося движения невязкой жидкости при действии сил тяжести и сил давления имеет вид......

$$-z + \frac{P}{\rho g} - \frac{V^2}{2g} \neq 2H$$

$$-z + \frac{P}{2 \rho g} + \frac{V^2}{g} = const$$

$$-z + \frac{P}{\rho g} + \frac{V^2}{2g} = const$$

$$-z + \frac{P}{\rho g} - \frac{V^2}{2g} = const$$

124. Формула Шези и производные от нее используются.....

- квадратичного сопротивления
- гладких русел
- кубического сопротивления
- доквадратичного сопротивления

125. Число Рейнольдса величина.....

- измеряется в м/с
- измеряется в Па
- безразмерная
- измеряется в M^2/c

- 126. Чтобы все силы одинаковой природы, действующие на любую пару сходных элементов, отличались друг от друга лишь постоянными масштабами, необходимо выполнение......подобия.
 - кинематического
 - геометрического
 - динамического
 - статического
- 127. Шероховатость стенок русла на потери напора по длине при ламинарном режиме движения.....
 - влияет, если она зависит от числа Рейнольдса
 - не оказывает влияния
 - влияет в случае если она относительная
 - влияет в случае если она абсолютная
- 128. Эпюра скоростей жидкости по живому сечению в круглоцилиндрической трубе при ламинарном режиме движения имеет вид......
 - гиперболы
 - прямой линии
 - параболы
 - прямоугольника
- 129. Энергетический смысл величины $V^2/2g$ в энергетической интерпретации уравнения Бернулли для установившегося движения невязкой жидкости при действии сил тяжести и сил давления заключается в......
 - кинетической энергии, отнесенной к единице веса (удельная кинетическая энергия)
 - полном напоре
 - работе силы давления, отнесенной к единице веса жидкости
- потенциальной энергии, отнесенной к единице веса (удельная потенциальная энергия)
 - 130. Элементарная струйка представляет собой......
 - совокупность линий тока, проведенных через все точки, элементарной площадки
 - траекторию движения частиц неизменную во времени
 - кривую линию, в каждой точке которой векторы скоростей являются касательными
 - траекторию движения частиц, изменяющуюся во времени
- 131. Эпюра избыточного давления на вертикальную или наклонную стенку имеет вид
 - прямоугольного треугольника
 - прямоугольника
 - трапеции
 - круга
- 132. Энергетический смысл величины Z величины расположения сечения элементарной струйки над некоторой горизонтальной плоскостью (плоскость сравнения) в уравнении Бернулли для установившегося движения невязкой жидкости при действии сил тяжести и сил давления является
- кинетическая энергия, отнесенная к единице веса жидкости (удельная кинетическая энергия)
 - полный напор
 - работа силы давления, отнесенная к единице веса жидкости
 - потенциальная энергия положения, отнесенная к единице веса жидкости